Полiт.ua Государственная сеть Государственные люди Войти
18 октября 2017, среда, 12:23
Facebook Twitter LiveJournal VK.com RSS

НОВОСТИ

СТАТЬИ

АВТОРЫ

ЛЕКЦИИ

PRO SCIENCE

СКОЛКОВО

РЕГИОНЫ

Сотворение эмбриона

Эмбрион через 96 часов после заселения матрикса стволовыми клетками
Эмбрион через 96 часов после заселения матрикса стволовыми клетками

Ученые из Кембриджского университета сообщили о создании искусственного эмбриона мыши без использования половых клеток. Они смогли вырастить в лабораторных условиях структуру, напоминающую естественный эмбрион, применив только два типа стволовых клеток и внеклеточный матрикс.

При обычном развитии эмбриона млекопитающих, оплодотворенная яйцеклетка многократно делится, образуя эмбриональные стволовые клетки. Спустя некоторое время, когда наступает стадия бластоцисты, в составе эмбриона выделяются две группы клеток. Одна из них (эмбриобласт) образована клетками, которые в будущем образуют тело нового живого существа, другая (трофобласт) даст начало плаценте, с помощью которой эмбрион прикрепится к стенке матки и будет получать питание. На стадии бластоцисты эмбрион имеет вид полого шарика (у человека его диаметр равен примерно одной десятой миллиметра). Оболочку этого шарика образуют клетки трофобласта, а клетки эмбриобласта скапливаются внутри, возле одного из его полюсов.

В предыдущих попытках вырастить искусственный эмбрион, не прибегая к искусственному оплодотворению или клонированию, использовались только стволовые клетки эмбриобласта. В результате не удавалось получить структуру, хотя бы отчасти напоминающую эмбрион на ранней стадии развития, так как в этот период требуется, чтобы разные типы клеток координировали тесное взаимодействие друг с другом.

В новом исследовании авторы использовали не только стволовые клетки эмбриобласта, но и трофобластные стволовые клетки (их также называют экстраэмбриональными стволовыми клетками), а также внеклеточный матрикс, который должен был обеспечить трехмерную структуру эмбриона.

Внеклеточный матрикс – это каркас любого органа, окружающий каждую клетку. Обычно он состоит из коллагена и других гликопротеинов, протеогликанов и гиалуроновой кислоты. В последние несколько лет матрикс все чаще используется в экспериментах по созданию новых органов. Разработан способ вымывать все клетки из матрикса, оставляя сам каркас неповрежденным. После этого материкс заселяется стволовыми клетками, которые формируют орган. Это может найти применение в трансплантологии, когда донорский орган нельзя пересадить пациенту напрямую из-за иммунного отторжения, но можно взять матрикс, удалить из него клетки донора (сам по себе матрикс иммунного ответа не вызывает) и заполнить стволовыми клетками реципиента.

В данном случае матрикс был заселен трофобластными и эмбриобластными стволовыми клетками. В результате ученые смогли вырастить структуру способную к самостоятельному развитию, причем ее строение было весьма близко к естественному зародышу мыши. «И эмбриональные, и внеэмбриональные клетки начинают говорить друг с другом и становятся организованными в структуру, которая выглядит и ведет себя как эмбрион, – объясняет профессор Магдалена Зерницка-Гетц (Magdalena Zernicka-Goetz) из отделения физиологии, развития и неврологии, которая возглавляла исследование. – Он имеет анатомически правильные регионы, которые развиваются в нужном месте и в нужное время».

Как обнаружили Зерницка-Гетц и ее коллеги, в процессе развития структуры искусственного эмбриона разные типы стволовых клеток проявляют удивительную степень взаимодействия, в каком-то смысле они подсказывают друг другу, в каком месте эмбриона им надлежит оказаться. Трофобластные и эмбриобластные стволовые клетки, использованные в этом эксперименте, были генетически модифицированы: в них были внедрены гены флуоресцентных белков разного цвета, что позволяло следить за их положением.

 

Сконструированный из стволовых клеток эмбрион через 96 часов. Трофобластные клетки светят темно-синим, эмбриобластные – пурпурным, межклеточный матрикс – голубым

Сначала эмбриональные стволовые клетки сконцентрировались на одной стороне матрикса, а трофобластные – на противоположной. Затем внутри каждого скопления клеток возникла внутренняя полость. На следующей стадии обе внутренних полости слились, образовав протоамниотическую полость, в которой должно проходить дальнейшее развитие эмбриона. Все эти стадии соответствуют естественному развитию мышиного зародыша. На последнем этапе эксперимента на соответствующем месте внутри искусственного зародыша даже образовались клетки, сходные с примордиальными половыми клетками эмбриона, из которых в дальнейшем должны получиться яйцеклетки или сперматозоиды.

 

Схема развития зародыша мыши после оплодотворения и развития искусственного зародыша из стволовых клеток и внеклеточного матрикса

Хотя этот искусственный эмбрион очень похож на настоящий, пока он не способен развиваться дальше в здоровый плод. В нынешнем эксперименте развитие эмбриональной структуры продолжалось четыре дня, так как далее искусственному эмбриону не от куда было получать кислород и питательные вещества. Чтобы продолжить его развитие в последующих экспериментах понадобится третья форма стволовых клеткок, которые должны образовать особый орган – желточный мешок, обеспечивающий питание эмбриона. При естественном развитии стволовые клетки желточного мешка возникают из клеток эмбриобласта. Также будет необходимо добиться правильного развития плаценты.

 

Слева эмбрион из стволовых клеток через 96 часов, справа – выращенный in vitro эмбрион через 48 часов после стадии бластоцисты

Недавно Магдалена Зерницка-Гетц разработала методику, которая позволяет бластоцистам развиваться in vitro после стадии имплантации, благодаря чему исследователи впервые смогут проанализировать ключевые стадии развития человеческого эмбриона в течение 13 дней после оплодотворения (подобные исследования на больших сроках во многих странах запрещены законодательно). Нынешний результат поможет преодолеть один из главных барьеров в исследованиях эмбрионов человека: нехватку эмбрионов. Пока все исследования проводятся на эмбрионах, которые развиваются из яйцеклеток, полученных из клиник репродуктивной медицины. «Мы думаем, что можно будет имитировать много событий развития, происходящих до 14 дней, используя человеческие эмбриональные и экстра-эмбриональные стволовые клетки и подход, близкий к нашей методике с использованием стволовых клеток мышей, – говорит Магдалена Зерницка-Гетц. – Мы ожидаем, что это позволит нам изучить ключевые события этого критического этапа развития человека, не прибегая к работе с эмбрионами. Зная, как развитие обычно происходит, мы сможем понять, почему он так часто идет не так ».

Исследование опубликовано в журнале Science.

Обсудите в соцсетях

Система Orphus
Loading...
Подпишитесь
чтобы вовремя узнавать о новых спектаклях и других мероприятиях ProScience театра!
3D Apple Big data Dragon Facebook Google GPS IBM MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi Адыгея Александр Лавров альтернативная энергетика «Ангара» антибиотики античность археология архитектура астероиды астрофизика аутизм Байконур бактерии бедность библиотека онлайн библиотеки биология биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера бозон Хиггса британское кино Византия визуальная антропология викинги вирусы Вольное историческое общество воспитание Вселенная вулканология Выбор редакции гаджеты генетика география геология геофизика глобальное потепление грибы грипп дельфины демография дети динозавры ДНК Древний Египет естественные и точные науки животные жизнь вне Земли Западная Африка защита диссертаций землетрясение змеи зоопарк зрение Иерусалим изобретения иммунология инновации интернет инфекции информационные технологии искусственный интеллект ислам историческая политика история история искусства история России история цивилизаций История человека. История институтов исчезающие языки карикатура католицизм квантовая физика квантовые технологии КГИ киты климатология комета кометы компаративистика компьютерная безопасность компьютерные технологии космический мусор космос криминалистика культура культурная антропология лазер Латинская Америка лексика лженаука лингвистика Луна мамонты Марс математика материаловедение МГУ медицина междисциплинарные исследования местное самоуправление метеориты микробиология Минобрнауки мифология млекопитающие мобильные приложения мозг моллюски Монголия музеи НАСА насекомые неандертальцы нейробиология неолит Нобелевская премия НПО им.Лавочкина обезьяны обучение общество О.Г.И. одаренные дети онкология открытия палеолит палеонтология память папирусы паразиты педагогика планетология погода подготовка космонавтов популяризация науки право преподавание истории продолжительность жизни происхождение человека Протон-М психоанализ психология психофизиология птицы РадиоАстрон ракета растения РБК РВК РГГУ регионоведение религиоведение рептилии РКК «Энергия» робототехника Роскосмос Роспатент Россотрудничество русский язык рыбы Сергиев Посад сердце Сингапур сланцевая революция смертность СМИ Солнце сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры торнадо транспорт ураган урбанистика фармакология Фестиваль публичных лекций физика физиология физическая антропология финансовый рынок фольклор химия христианство Центр им.Хруничева черные дыры школа школьные олимпиады эволюция эволюция человека экология эмбриональное развитие эпидемии эпидемиология этика этнические конфликты этология Юпитер ядерная физика язык

Редакция

Электронная почта: politru.edit1@gmail.com
Адрес: 129090, г. Москва, Проспект Мира, дом 19, стр.1, пом.1, ком.5
Телефон: +7 495 980 1894.
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003г. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2014.