Полiт.ua Государственная сеть Государственные люди Войти
25 ноября 2017, суббота, 10:58
Facebook Twitter LiveJournal VK.com RSS

НОВОСТИ

СТАТЬИ

АВТОРЫ

ЛЕКЦИИ

PRO SCIENCE

СКОЛКОВО

РЕГИОНЫ

18 августа 2017, 13:00

Виртуальное сердце

Человеческое сердце
Человеческое сердце
Илл.: Patrick J. Lynch

Исследовательская группа из Московского физико-технического института и Гентского университета разработала первую реалистичную модель, которая воспроизводит сложное строение сердечной ткани. С помощью нее ученые надеются установить связь между структурными изменениями сердечной ткани (например, развитием фиброза) и возникновением аритмии. Хотя модель описывает пока только один слой сердечных клеток, электрические волны распространяются по виртуальному слою так же, как и по реальному. Работа опубликована в журнале Scientific Reports, кратко о ней рассказывается в пресс-релизе МФТИ.

Согласно статистике ВОЗ, сердечно-сосудистые заболевания являются самой частой причиной смерти в мире, из них около 40% случаев происходят внезапно и вызваны аритмией. Аритмия – это нарушение нормального ритма сокращения сердца. Сердце сокращается благодаря распространению электрических волн в сердечной ткани. Сердечная ткань состоит из разных клеток, электрические волны передают возбудимые клетки – кардиомиоциты. Кроме кардиомиоцитов в сердечной ткани есть не передающие электрическое возбуждение клетки, например, фибробласты. Если фибробластов становится слишком много, изменяется распространение волн. Такое нарушение называется фиброзом, оно является частой причиной аритмии.

Наблюдать постепенное развитие аритмии у пациентов невозможно, но с помощью компьютерной имитации сердечной мышечной ткани можно было бы изучить взаимосвязь между клеточным строением ткани и развитием аритмии. Нина Кудряшова, аспирантка МФТИ, комментирует: «В процессе старения вероятность возникновения аритмии увеличивается, отчасти это связано с появлением фиброза. У пациентов можно наблюдать уже только финальную картину строения сердечной ткани, но не сам процесс. Поэтому мы разработали математическую модель, которая смогла бы показать, какие факторы ведут к образованию того или иного типа фиброза».

Экспериментальная клеточная культура в четырех случаях. Желтыми оттенками показаны кардиомиоциты, синими – фибробласты. На верхних двух картинках отдельные клетки и клетки в составе единого монослоя без нановолокон, на нижних двух на подложке из нановолокон.

Чтобы построить достоверную модель, ученые собрали экспериментальные данные о формах клеток. Для этого они высадили культуру из сердечных клеток – кардиомиоцитов и фибробластов – в разных условиях. Всего было четыре случая: изолированные друг от друга клетки, клетки в составе единого монослоя и то же самое, но на подложке из нановолокон. Нановолокна имитируют внеклеточный матрикс, который задает структуру ткани в реальном сердце. Благодаря нановолокнам клетки вытягиваются в одном направлении, воссоздавая устройство сердечного мышечного волокна. Таким образом ученые собрали статистические данные о том, какой формы бывают фибробласты и кардиомиоциты и как они взаимодействуют между собой.

Аспирантка МФТИ Валерия Цвелая объясняет: «Из-за того, что клетки сердечной ткани вытянуты в определенном направлении, ткань обладает так называемым свойством анизотропии. То есть электрические волны в разных направлениях распространяются по-разному. Если волны распространяются одинаково во всех направлениях (как, например, на слое без нановолокон), это называется изотропией».

Для имитации формирования сердечной ткани ученые взяли за основу математическую модель, которая широко используется в исследованиях роста тканей, и оптимизировали ее с помощью собранных экспериментальных данных. Полученная модель смогла точно воспроизвести параметры форм клеток во всех четырех случаях. С помощью электрода ученые стимулировали клетки в культуре, чтобы наблюдать распространение волн возбуждения. Также они моделировали поведение волн на виртуальных образцах сердечной ткани. Получилось, что по виртуальному слою сердечной ткани волны распространяются точно так же, как и по реальному, и в изотропном, и в анизотропном случаях. Это означает, что разработанную модель действительно можно использовать для изучения свойств сердечной ткани и возможных предпосылок аритмии.

Распространение электрических волн. Верхние изображения – для изотропного случая, нижние – для анизотропного. a) Экспериментальные образцы. b) Компьютерная симуляция.

Распространение волн на сердечных тканях моделировалось и раньше, но это были простые модели, которые не воспроизводили сложную форму клеток. Кроме того, в предыдущих симуляциях фибробласты располагаются случайным образом. Но реальные кардиомиоциты и фибробласты специфически взаимодействуют друг с другом, и это приводит к некоторой группировке клеток. Авторы же новой модели учли формы клеток и межклеточное взаимодействие, что делает компьютерную имитацию более похожей на сердечную ткань.

«Наша модель предсказывает такое же распространение волн, какое мы наблюдали в эксперименте, а значит, с помощью нее можно научиться предсказывать вероятность развития аритмии. То есть можно варьировать условия формирования ткани и смотреть, насколько вероятно развитие аритмии в этой ткани», – поясняет руководитель лаборатории биофизики возбудимых систем МФТИ профессор Константин Агладзе.

Вместе с тем, модель находится на первой стадии разработки. В ней еще не учтены некоторые факторы, например, миграция и деление клеток, которые могут влиять на формирование ткани. Кроме того, сердце трехмерное, а модель двумерная – ученым еще предстоит расширить ее до трехмерной. Благодаря этому появятся новые возможности для исследования сердечных аритмий, связанных со структурой сердечной ткани.

Обсудите в соцсетях

Система Orphus
Loading...
Подпишитесь
чтобы вовремя узнавать о новых спектаклях и других мероприятиях ProScience театра!
3D Apple Big data Dragon Facebook Google GPS IBM MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi автоматизация бизнеса Адыгея Александр Лавров альтернативная энергетика «Ангара» антибиотики античность археология архитектура астероиды астрофизика аутизм Байконур бактерии бедность библиотека онлайн библиотеки биология биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера бозон Хиггса британское кино Византия визуальная антропология викинги вирусы Вольное историческое общество воспитание Вселенная вулканология Выбор редакции гаджеты генетика география геология геофизика глобальное потепление грибы грипп дельфины демография дети динозавры ДНК Древний Египет естественные и точные науки животные жизнь вне Земли Западная Африка защита диссертаций землетрясение змеи зоопарк зрение Иерусалим изобретения иммунология инновации интернет инфекции информационные технологии искусственный интеллект ислам историческая политика история история искусства история России история цивилизаций История человека. История институтов исчезающие языки карикатура картография католицизм квантовая физика квантовые технологии КГИ киты климатология комета кометы компаративистика компьютерная безопасность компьютерные технологии космический мусор космос криминалистика культура культурная антропология лазер Латинская Америка лексика лженаука лингвистика Луна мамонты Марс математика материаловедение МГУ медицина междисциплинарные исследования местное самоуправление метеориты микробиология Минобрнауки мифология млекопитающие мобильные приложения мозг моллюски Монголия музеи НАСА насекомые научный юмор неандертальцы нейробиология неолит Нобелевская премия НПО им.Лавочкина обезьяны обучение общество О.Г.И. одаренные дети онкология открытия палеолит палеонтология память папирусы паразиты педагогика планетология погода подготовка космонавтов популяризация науки право преподавание истории продолжительность жизни происхождение человека Протон-М психоанализ психология психофизиология птицы РадиоАстрон ракета растения РБК РВК РГГУ регионоведение религиоведение рептилии РКК «Энергия» робототехника Роскосмос Роспатент Россотрудничество русский язык рыбы Сергиев Посад сердце Сингапур сланцевая революция смертность СМИ Солнце сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры торнадо транспорт ураган урбанистика фармакология Фестиваль публичных лекций физика физиология физическая антропология финансовый рынок фольклор химия христианство Центр им.Хруничева черные дыры школа школьные олимпиады эволюция эволюция человека экология эмбриональное развитие эпидемии эпидемиология этика этнические конфликты этология Юпитер ядерная физика язык

Редакция

Электронная почта: politru.edit1@gmail.com
Адрес: 129090, г. Москва, Проспект Мира, дом 19, стр.1, пом.1, ком.5
Телефон: +7 495 980 1894.
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003г. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2014.