Полiт.ua Государственная сеть Государственные люди Войти
25 сентября 2018, вторник, 16:28
Facebook Twitter VK.com Telegram

НОВОСТИ

СТАТЬИ

АВТОРЫ

ЛЕКЦИИ

PRO SCIENCE

СКОЛКОВО

РЕГИОНЫ

22 февраля 2018, 11:30

Как бактерия находит свою цель

Ученым из Института математических проблем биологии РАН совместно с возглавляемой Сюзанной Андраде группой ученых из Университета Фрайбурга, а также с коллегами из Европейской молекулярно-биологической лаборатории в Гамбурге и Университета Неймегена удалось установить структуру необычной сигнальной системы, присутствующей в анаммокс-бактериях. Результаты исследования опубликованы в журнале Nature Communications, кратко о них сообщается в пресс-релизе ИМПБ РАН.

Анаммокс-бактерии были открыты в самом конце XX века и быстро нашли применение в промышленных системах очистки сточных вод от азотного загрязнения, возникающего в результате широкого использования в сельском хозяйстве азотных удобрений. Это применение основано на удивительном свойстве анаммокс-бактерий - их способности поглощать ионы аммония и нитрита, превращая их в воду и молекулярный азот, являющийся основным компонентом земной атмосферы. Они способны осуществлять превращения даже при очень низкой концентрации аммония. При этом, процесс преобразования происходит в бескислородной среде, то есть, не требуя расхода кислорода.

Бактерия лишена органов чувств. Каким образом она находит аммоний в окружающей среде? Передача сигнала через внешнюю оболочку клетки — один из важнейших вопросов современной биологии. Понимая механизмы передачи сигнала, можно научиться управлять такими бактериями. Ученых заинтересовал необычный белок, обнаруженный в одном из видов анаммокс-бактерий. Последовательность аминокислот этого белка содержала необычную комбинацию двух разнотипных частей. Первая часть была похожа на структуру трансмембранных белков, которые пронизывают клеточную мембрану насквозь и передают ионы аммония внутрь клетки.

Вторая часть напоминала белки гистидин-киназы. Эти белки часто присутствуют в системах передачи сигнала из наружной среды внутрь клетки. Передача сигнала представляет собой цепь последовательных биохимических реакций. У данной молекулы поступление сигнала шло посредством фосфорилированием гистидина, т.е. присоединением к боковой цепи гистидина остатка фосфорной кислоты.

Изучаемый белок состоит из двух частей, одна пронизывает мембрану клетки насквозь, вторая часть представляет собой гибкую двухкомпонентную систему. Tobias Pflüger et al./Nature Communications.

Исследователями была выдвинута гипотеза, что обнаруженный двухкомпонентный белок является средством передачи внутрь клетки сигнала о наличии аммония во внеклеточной среде. Эта гипотеза была подтверждена в процессе исследования.

Ученые установили, что трансмембранная часть белка бактерии не имеет транспортных функции. Она не передает аммоний внутрь клетки, а сама соединяется с ним. На языке биологов, у нее появляются центры связывания высокой чувствительности. Соединение с аммонием в этих центрах приводит к изменению конфигурации белка в пространстве. Проще говоря, он начинает двигаться. Это изменение передается на гибко сочлененную с трансмембранной частью киназную часть и приводит к биохимической реакции - фосфорилированию аминокислотного остатка гистидина. Которая и является сигналом о присутствии аммония во внешней среде.

Пространственную структуру белков получают с помощью рассеяния рентгеновских лучей на молекулах исследуемого белка. Наиболее детальную информацию удается получить, если белок кристаллизовать, то есть уложить множество его молекул в кристаллическую решетку. Это приводит к радикальному усилению рассеянных лучей и более четкой картине. Однако при работе с данным белком получение высококачественных кристаллов было существенно усложнено наличием гибкой двухкомпонентной системы. Внутренняя гибкость этого модульного белка оказалась серьезным препятствием для нахождения его структуры. Полную структуру удалось определить, лишь применив специальные математические подходы, разработанные в Институте математических проблем биологии для исследования структур плохо упорядоченных кристаллов.

Обсудите в соцсетях

Система Orphus
Loading...
Подпишитесь
чтобы вовремя узнавать о новых спектаклях и других мероприятиях ProScience театра!
3D Apple Big data Dragon Facebook Google GPS IBM MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi Адыгея акустика Александр Лавров альтернативная энергетика «Ангара» антибиотики античность археология архитектура астероиды астрофизика аутизм Африка бактерии бедность библиотеки биология биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера бозон Хиггса Византия викинги вирусы военная полиция Вольное историческое общество воспитание Вселенная вулканология гаджеты генетика география геология геофизика глобальное потепление гравитация грибы грипп дельфины демография демократия дети динозавры ДНК Древний Египет естественные и точные науки животные жизнь вне Земли Западная Африка защита диссертаций землетрясение змеи зоопарк зрение Иерусалим изобретения иммунология импорт инновации интернет инфекции информационные технологии искусственный интеллект ислам исламизм история история искусства история цивилизаций История человека. История институтов исчезающие языки карикатура картография католицизм квантовая физика квантовые технологии КГИ киты климатология комета кометы компаративистика компьютерная безопасность компьютерные технологии космический мусор космос криминалистика культура культурная антропология Курская область лазер Латинская Америка лексика лженаука лингвистика Луна льготы мамонты Марс математика материаловедение МГУ медицина междисциплинарные исследования Международный арбитражный суд в Гааге местное самоуправление Металлургия метеориты микробиология микроорганизмы Минобрнауки мифология млекопитающие мобильные приложения мозг моллюски Монголия музеи НАСА насекомые научный юмор неандертальцы нейробиология неолит Нобелевская премия НПО им.Лавочкина обезьяны обучение общество одаренные дети онкология открытия палеолит палеонтология память папирусы паразиты педагогика перевод персональные данные планетология погода подготовка космонавтов политика право преподавание истории приматы продолжительность жизни происхождение человека Протон-М психоанализ психология психофизиология птицы РадиоАстрон ракета растения РБК РВК РГГУ религиоведение рептилии РКК «Энергия» робототехника Роскосмос Роспатент Росприроднадзор Российская империя Русал русский язык рыбы Сергиев Посад сердце Сингапур сланцевая революция смертность СМИ Солнце сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология финансовый рынок фольклор химия христианство Центр им.Хруничева черные дыры школа эволюция экология эмбриональное развитие эпидемии эпидемиология этнические конфликты этология Юпитер ядерная физика язык

Редакция

Электронная почта: politru.edit1@gmail.com
Адрес: 129090, г. Москва, Проспект Мира, дом 19, стр.1, пом.1, ком.5
Телефон: +7 495 980 1894.
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003г. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2014.