Полiт.ua Государственная сеть Государственные люди Войти
12 декабря 2018, среда, 01:38
Facebook Twitter VK.com Telegram

НОВОСТИ

СТАТЬИ

АВТОРЫ

ЛЕКЦИИ

PRO SCIENCE

СКОЛКОВО

РЕГИОНЫ

Что такое nanoMIP?

NanoMIP под микроскопом
NanoMIP под микроскопом
Jon Ashley, Xiaotong Feng et al.

Международная группа исследователей под руководством Николая Барлева, заведующего Лабораторией клеточного сигналинга Московского физико-технического института, показала принципиальную возможность создания нового класса противоопухолевых препаратов на основе nanoMIP - «пластиковых антител», сообщается в пресс-релизе МФТИ. Эта разновидность наночастиц является полимерным синтетическим аналогом антител и способна специфично связывать белки-мишени на поверхности раковых клеток. В будущем развитие данного подхода может привести к смене существующей парадигмы в разработке новых методов лечения рака. Исследования проводились международной группой ученых из Университета Лестера (Великобритания), Университетского колледжа Лондона (Великобритания), Института цитологии РАН и МФТИ. Работа была опубликована на страницах журнала Nano Letters и была поддержана грантом РНФ.

Основным недостатком большинства методов лечения онкологических заболеваний является их низкая специфичность и связанные с этим побочные эффекты. Наиболее распространённые препараты для химиотерапии поражают абсолютно все делящиеся клетки в организме независимо от их статуса. В то же время с получением новых знаний о молекулярных механизмах рака и наиболее важных участниках этого процесса начали создаваться лекарственные препараты нового поколения, которые нацелены на специфические мишени, отличающие клетки опухоли от нормальных клеток организма. Поскольку раковые клетки быстро делятся, то им постоянно необходимы дополнительные ростовые факторы. Эти факторы, поступающие из окружающей среды, узнаются соответствующими белками-рецепторами на поверхности клеток. Идет активация внутриклеточного сигналинга, который, в свою очередь, тоже направлен на усиление роста раковых клеток.

Оказалось, что такие поверхностные белки-рецепторы часто синтезируются в избыточных количествах в различных формах твердых опухолей. В течение последних двух десятилетий был разработан и успешно прошел клинические испытания целый ряд терапевтических препаратов, направленных как на подавление связывания ростовых факторов с соответствующими рецепторами, так и непосредственно на их ферментативную активность. Соответственно, разработка новых синтетических лекарств против данной группы молекулярных мишеней является перспективным направлением молекулярной фармакологии и привлекает пристальное внимание исследователей во всем мире.

Группа Николая Барлева показала принципиальную возможность создания нового класса противоопухолевых препаратов на основе nanoMIP (molecularly imprinted polymers - полимеров с молекулярными отпечатками). Это полимерный синтетический аналог антител с трехмерной структурой, способной связывать только определенный участок молекулы-мишени, т.е. обеспечивать высокую специфичность взаимодействия. Однако, в отличие от антител, nanoMIP также могут быть использованы в качестве носителя для дополнительных противораковых лекарств. В рамках работы исследователи впервые продемонстрировали возможность синтеза nanoMIP, специфично связывающих аминокислотные последовательности белков-мишеней, а также возможность их использования для направленной доставки лекарственных средств в опухолевые клетки (Рис. 1).

Рис. 1. Схема связывания синтезированных nanoMIP с поверхностью клетки. Полимерные наночастицы специфично связываются с EGFR, в то время как доксорубицин (показан красным) выходит из наночастиц и проникает через клеточную мембрану

Синтез полимерной наночастицы происходит в присутствии молекулы-мишени, что приводит к образованию в nanoMIP "отпечатков" молекулы-мишени. Этот процесс можно сравнить со снятием форм для отливки, при которой конечный материал сохраняет очертания модели. Называется он импритингом. При этом полученные «формы» приобретают способность специфично распознавать и связывать молекулу-«мишень». В проведенном исследовании в качестве мишени был выбран тирозин-киназный рецептор EGFR (epithelial growth factor receptor - рецептор эпидемального фактора роста). Его повышенное присутствие наблюдается в широком спектре опухолей – от колоректального рака, рака легкого, наиболее агрессивной формы рака молочной железы, трижды негативного РМЖ, до опухоли мозга. Именно в силу этих факторов EGFR стал одной из первых мишеней для противоопухолевых препаратов на основе антител. В данной работе наночастицы были получены методом двойного импринтинга против двух молекул мишеней – линейного эпитопа («эпитоп» – участок мишени, который узнаётся антителом при связывании) EGFR и цитотоксического лекарственного препарата доксорубицина. Таким образом, конечный продукт одновременно может связываться с EGFR и оказывать терапевтическое воздействие за счет модификации доксорубицином.

Николай Барлев объясняет: «Несмотря на свою эффективность, препараты на основе антител сложны в разработке и дороги в производстве. В терапии тех форм рака, в которых наблюдается избыточная экспрессия EGFR успешно применяются специфические моноклональные антитела против этой мишени (сетуксимаб, или Erbitux®). Однако, в силу нестабильности этого препарата в организме, пациенту регулярно требуется вводить свежую порцию антител в течение всего курса терапии. Один такой курс для пациента стоит около 100 тысяч долларов США! Синтетические аналоги антител, такие как nanoMIP, лишены этих недостатков, кроме того, в отличие от биомолекул, в целом их стабильность не зависит от таких условий среды как температура и кислотность, а значит шире спектр их возможного использования. В перспективе они могут существенно расширить возможности диагностики и лечения самых разных болезней».

При этом для синтеза nanoMIP, способных специфично распознавать и связывать определенный белок, достаточно создать «отпечаток» не всей молекулы, а лишь ее небольшого участка. Этот короткий олигопептид ковалентно (т.е. с образованием химической связи) «пришивается» на стеклянные шарики, которые затем смешиваются с мономерами акриламида и доксорубицином. Стоит отметить, что полиакриламид, в отличие от собственных мономеров, является биологически безопасным материалом, который используется, например при производстве мягких контактных линз.  При увеличении температуры происходит полимеризация мономеров, и формируются наночастицы размером от 100 до 200 нм с молекулярным «отпечатком» белка-мишени и включённым в них доксорубицином. Непрореагировавшие мономеры и неспецифичные наночастицы отмываются, в то время как синтезированные «пластиковые антитела» остаются связанными со стеклянными шариками (Рис. 2).

Рис. 2. Схема синтеза nanoMIP с иммобилизованным на стеклянных шариках концевым фрагментом EGFR

«Нам впервые удалось получить полифункциональные nanoMIP, сочетающие в себе специфичность узнавания белков-мишеней, так и возможность адресной доставки различных химических препаратов. Ранее это было невозможно, так как технология синтеза не позволяла стандартизовать условия получения nanoMIP и эффективность получаемого продукта была непредсказуемой. Использование твердофазного синтеза помогло решить эту проблему. На очереди – создание ферромагнитных nanoMIP, которые позволяет еще больше расширить функциональность «пластиковых антител» как для диагностики, так и для терапии различных заболеваний», – говорит Николай Барлев.

В рамках исследования ученые продемонстрировали умеренную и специфичную токсичность полученных наночастиц для раковых клеток. Причем подобная токсичность достигалась исключительно за счет добавления доксорубицина при полимеризации, так как контрольные наночастицы, не несущие противоопухолевый препарат никак не влияли на клетки. Помимо этого, при добавлении терапевтических nanoMIP в клетках наблюдались множественные разрывы ДНК, характерные именно для воздействия доксорубицина (на этом основан механизм его действия). Наконец, связывание «пластиковых антител» с EGFR, дополнительно приводило к уменьшению плотности рецепторов на поверхности клеток.

Таким образом, потенциальный терапевтический эффект разработанных наночастиц для лечения EGFR-зависимых опухолей обусловлен тремя факторами – прямым цитотоксическим эффектом доставляемого противоопухолевого препарата, маскировкой рецептора от его лиганда и уменьшением концентрации EGFR на поверхности клеток. Успешные результаты экспериментов in vitro свидетельствуют о перспективности использования nanoMIP для специфичной доставки лекарств и являются хорошей предпосылкой для дальнейших исследований.

Обсудите в соцсетях

Система Orphus
Loading...
Подпишитесь
чтобы вовремя узнавать о новых спектаклях и других мероприятиях ProScience театра!
3D Apple Big data Dragon Facebook Google GPS IBM MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi Адыгея акустика Александр Лавров альтернативная энергетика «Ангара» антибиотики античность археология архитектура астероиды астрофизика аутизм Африка бактерии бедность библиотеки биология биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера бозон Хиггса Византия викинги вирусы военная полиция Вольное историческое общество воспитание Вселенная вулканология гаджеты генетика география геология геофизика глобальное потепление гравитация грибы грипп дельфины демография демократия дети динозавры ДНК Древний Египет естественные и точные науки животные жизнь вне Земли Западная Африка защита диссертаций землетрясение змеи зоопарк зрение Иерусалим изобретения иммунология импорт инновации интернет инфекции информационные технологии искусственный интеллект ислам исламизм история история искусства история цивилизаций История человека. История институтов исчезающие языки карикатура картография католицизм квантовая физика квантовые технологии КГИ кельты киты климатология комета кометы компаративистика компьютерная безопасность компьютерные технологии космический мусор космос криминалистика культура культурная антропология Курская область лазер Латинская Америка лексика лженаука лингвистика Луна льготы мамонты Марс математика материаловедение МГУ медицина междисциплинарные исследования Международный арбитражный суд в Гааге местное самоуправление Металлургия метеориты микробиология микроорганизмы Минобрнауки мифология млекопитающие мобильные приложения мозг моллюски Монголия музеи НАСА насекомые научный юмор неандертальцы нейробиология неолит Нобелевская премия НПО им.Лавочкина обезьяны облачные технологии обучение общество одаренные дети онкология открытия палеолит палеонтология память папирусы паразиты педагогика перевод персональные данные планетология погода подготовка космонавтов политика право преподавание истории приматы продолжительность жизни происхождение человека Протон-М психиатрия психоанализ психология психофизиология птицы РадиоАстрон ракета растения РБК РВК РГГУ религиоведение рептилии РКК «Энергия» робототехника Роскосмос Роспатент Росприроднадзор Российская империя Русал русский язык рыбы Сергиев Посад сердце Сингапур сланцевая революция смертность СМИ Солнце сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология финансовый рынок фольклор химия христианство Центр им.Хруничева черные дыры школа эволюция экология эмбриональное развитие эпидемии эпидемиология этнические конфликты этология Юпитер ядерная физика язык

Редакция

Электронная почта: politru.edit1@gmail.com
Адрес: 129090, г. Москва, Проспект Мира, дом 19, стр.1, пом.1, ком.5
Телефон: +7 495 980 1894.
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003г. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2014.