29 марта 2024, пятница, 09:53
TelegramVK.comTwitterYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Космологические коаны

Издательство Corpus представляет книгу Энтони Агирре «Космологические коаны. Путешествие в самое сердце физической реальности» (перевод Татьяны Лисовской и Инны Кагановой).

Энтони Агирре — не только известный физик, космолог и математик, но и популяризатор науки, выступавший как эксперт в ряде документальных фильмов. В своих «Космологических коанах» он решил рассказать об устройстве нашего мира именно как физик и прибегнул для этого к практике дзен-буддистских коанов. Коаны — это своего рода притчи, в которых заключено учение о реальности, как оно понимается адептами дзен-буддизма. Таких коанов в книге несколько десятков, и каждый из них затрагивает какую-то одну тему (классическую и квантовую механику, теорию вычислений, энтропию и т. д.). Нелегко говорить о таких сложных предметах понятно и увлекательно, но автору это удалось: вдумчивый читатель еще раз убеждается, что наша Вселенная — место довольно таинственное, между ее свойствами и существованием людей есть связь.

«Цель "Космологических коанов" — исследовать ту странную глубинную связь, которая возникает между структурой физического мира (от бесконечно малых до самых больших, космических масштабов) и нашим субъективным опытом — опытом обитателей этого мира. Я приглашаю вас взглянуть на важнейшие физические вопросы через призму личного опыта и надеюсь передать вам хотя бы частичку того ощущения тайны, смятения и удивления, которое возбудили во мне эти размышления», — пишет автор.

Предлагаем прочитать фрагмент книги.

 

Закон достаточного основания при бросании кости

(Агра, Индия, 1611 год)

Хотя азартные игры при дворе Джахангира и были формально запрещены, к игрокам всё еще относились снисходительно, и ты, вспомнив о неопубликованной книге Кардано по математической теории азартных игр, приходишь к мысли, что у тебя должно быть преимущество при игре в кости. Однако удача отвернулась от тебя, и ты начинаешь громко сетовать, что тебе не везет. А ставки меж тем поднялись уже высоко. Старец суфий, проходя мимо, слышит твои стенания и укоряет тебя: «Не жалуйся. Твое невезение в игре — воля Аллаха». Учитывая состояние твоих финансов, звучит не слишком вдохновляюще, но слова суфия заставляют тебя задуматься. Что влияет на бросок кости? Грань кубика с определенной цифрой оказывается сверху не то чтобы совсем случайно, это зависит от множества сложных причин — угла наклона руки и точного значения переданной ею кубику скорости в момент броска, текстуры стола и так далее; всё это вместе делает результаты бросков трудно предсказуемыми. Однако время, проведенное с джинном, убедило тебя в том, что предсказание результатов броска дело хотя и сложное, но не безнадежное.

Держа кубик в руке, ты понимаешь, что у тебя, допустим, 1 шанс из 3 получить благоприятный результат. Но для Вселенной — в лице Аллаха или джинна — в момент броска результат уже фактически предопределен, то есть вероятность определенного исхода равна 100 процентам. Вот только бы знать, какого именно! Ты утешаешь себя мыслью, что броски твоих партнеров по игре тоже зависят от случая, ты ведь не с джинном играешь, иначе у тебя не было бы ни единого шанса. Однако ты начинаешь задаваться вопросом, можно ли бросить кость так, что результат не сумеет предугадать даже джинн? Возможно. Ну, а как насчет Бога? Или Вселенной? Может ли цепочка причинно-следственных связей запуститься без причины?

Ты заставляешь себя вернуться мыслями к игре и готовишься бросить кость…

 

Может ли событие произойти без причины? Мы сплошь и рядом имеем дело с непредсказуемыми событиями, вроде результата бросания кости или погоды на следующей неделе. Также мы привыкли к идее, что многие непредсказуемые в конкретных случаях события статистически предсказуемы: например, вероятность выпадения двух шестерок у двух правильных костей равна 1/36 или 2,78 %. Под термином «правильная кость» мы понимаем вот что: для каждой такой кости шансы выпадения любого числа от 1 до 6 одинаковы. Под словом «шанс» мы понимаем следующее: если мы вообразим, что кидаем две кости очень много раз и подсчитываем результаты, число выпадений шестерок на обеих костях сразу составит примерно 1 из 36. (Эта своего рода закономерность во времени, позволяющая казино постоянно богатеть!) Хорошо разработанная отрасль математики — теория вероятности — берет свое начало в работах Джероламо Кардано. Дальнейшее свое развитие она получила в XVII и XVIII веках в трудах Лапласа и Декарта, и по сей день применяется в тех случаях, когда точный результат предсказать нельзя. И тогда событиям приписывается определенная вероятность.

Мы пользуемся этой теорией, потому что не знаем, как упадет кость или, к примеру, будет ли завтра дождь. Но знает ли это Вселенная? Абсолютно понятно, что существуют определенные причины для того, чтобы данная грань кости оказалась вверху, а дождь завтра пролился. Современные суперкомпьютеры предсказывают погоду гораздо лучше, чем это можете сделать вы. Или возьмем брошенную кость. Короткий видеоклип о движении только что брошенной кости в сочетании со сложнейшими компьютерными вычислениями, учитывающими особенности самой кости, стола, окружающего воздуха и прочего, предоставил бы достаточно информации для того, чтобы с большой точностью предсказать, как именно кость приземлится. С такой системой, если бы ей в процессе полета кости было разрешено сообщать информацию о полете, было бы глупо заключать пари на результат!

Способность компьютера предсказывать результат падения кости поднимает два вопроса. Во-первых, что произойдет с нашей вероятностью 1/6 выпадения определенной грани кубика? Ясно, что компьютер рассуждает не в таких выражениях. Он, напротив, выполнив вычисления, припишет выпадению определенной грани гораздо большую, чем другим, вероятность. Во-вторых, откуда вообще взялась вероятность 1/6?

Вглядимся пристальнее в то, что может делать эта причудливая компьютерная система (назовем ее симулятором). Короткий видеоклип представляет собой серию измерений положений в пространстве и скоростей определенных частей кости. Симулятор использует их в качестве начальных условий, численно решает основные физические уравнения и выводит результаты моделирования, показывающие (например), что грань кубика с четверкой окажется вверху.

Но хорошо сконструированный симулятор на этом не остановится, поскольку даже если бы вычисления были идеальными, измерения с помощью видеоклипа совсем не идеальны: каждое измерение допускает некоторую неточность. Чтобы вычисления оказались надежными, они проделываются не один раз, а много, очень много раз, причем всегда с использованием слегка отличающихся начальных условий, взятых из полного набора возможностей для каждого измерения. Например, если начальная скорость верхней вершины кубика, измеренная по видеоклипу, находится в интервале 4,5–4,7 см/сек, вычисления могут делаться для скоростей 4,50, 4,51, … 4,70 см/сек. И измерения других величин (типа начального положения или направления) для каждого из этих 21 значения могут варьироваться. В результате будет выполнено множество расчетов, и при этом, по идее, возникнет множество конечных результатов.

Теперь симулятор может подсчитать, какую долю результатов во всей этой серии симуляций составляет результат, при котором вверху оказывалась грань с определенной цифрой (1, 2 и т. д.). Эти доли переводятся в набор вероятностей, которые приписываются результатам бросков кости. Симулятор может выдать, например, такой результат: «Из 100 000 смоделированных бросков кости с начальными условиями, взятыми из видеоклипа, в 3 % случаев выпала единица, в 96 % — четверка, а на остальные цифры (2, 3, 5, 6) пришелся 1 % случаев». Это чрезвычайно полезный прогноз, предсказывающий не только самый вероятный результат, но и то, насколько этот результат более вероятен, чем остальные. И это в точности то, что делается при составлении прогноза погоды: одни и те же расчеты проводятся множество раз, и доля тех результатов, которые показали, что в вашем районе завтра будет дождь, считается «вероятностью дождя».

Теперь вернемся к вероятности выпадения четверки, которую в отсутствие поддержки от симулятора с его мощной предсказательной способностью мы считаем равной 1/6. Но эта вероятность обусловлена другой причиной. Мы можем бросать кость много раз и записывать результаты. Но очевидной причины для получения в этом опыте вероятности выпадения четверки, равной 1/6, не видно. Однако именно такая вероятность получается вследствие симметрии кости: все грани кубика в смысле результатов бросков идентичны и отличаются только нарисованными на них цифрами. Точнее, между конкретной гранью кубика и физическими процессами, происходящими при бросании кубика, нет корреляции, и именно это мы называем «правильной» костью. Если одна сторона кости тяжелее, такая кость будет«неправильной» именно потому, что имеются корреляции между этой стороной кости и физическими процессами, происходящими при броске, и эти корреляции нарушают симметрию шести граней.

Симметрии, однако, не вполне достаточно для того, чтобы объяснить разницу между «вашей» вероятностью 1/6 и результатом симулятора — 96 %. Если вы бросаете кость с высоты всего 1 см над столом, очень вероятно, что она упадет вверх той же стороной, которая смотрела вверх, когда кость была в руке в момент броска. Таким образом, для получения вероятности 1/6 требуется не только отсутствие корреляции между определенной стороной кубика и физическими процессами, управляющими его движением, но и достаточная сложность физического процесса, которая бы позволила разрушить любую корреляцию между результатом и видом информации, доступной вам как человеку, бросающему кость. Другими словами, при обычном броске кости имеется зависимость результата броска от начальных условий, но чтобы увидеть и использовать эту зависимость и получить в конечном итоге вероятность, отличную от 1/6, необходимо использовать всю мощь компьютерного симулятора и точные данные наблюдений.

 

Теперь подведем итоги. При бросании кости и вы, и компьютерный симулятор проходите через очень схожий прогнозирующий процесс. У вас есть модель процесса бросания кубика, а также доступ к некоторой информации о том конкретном броске, результат которого вы пытаетесь предсказать. Для вас эта информация довольно бесполезна, и вы прибегаете к оценке, основанной на симметрии, то есть на одинаковой вероятности выпадения грани с любой цифрой. А вот симулятор, который имеет доступ к полезной информации и возможность использования гораздо более сложной физической модели, может получить более точные прогнозы по распределению вероятностей. И поэтому, например, вы потеряете деньги при игре в кости с симулятором.

Легко себе представить, что симулятор может решить эту задачу лучше или хуже. Если используются лучшая видеокамера, более точная физическая модель стола и падения кости на него, более мощный компьютер и тому подобное, это может повысить точность определения вероятности выпадения, к примеру, четверки при броске правильной кости, доведя ее до значения 99,6 % вместо 96 %. Но столь же легко можно вообразить процесс броска, проходящий не так гладко. Например, если при броске кубик приземляется на ребро, вероятность кубика лечь на одну из прилегающих к этому ребру граней может оказаться примерно 50 на 50, так что потребуется очень много уточняющих расчетов перед тем, как та или иная вероятность начнет преобладать. Если же кость скатывается, к примеру, с длинного неровного холма, то даже симулятору будет трудно получить результат, отличный от стандартной вероятности 1/6, поскольку невозможно учесть все переменные и неопределенности. Но все-таки есть ощущение, что если приложить бездну усилий для улучшения модели и сбора более точных данных, то расчеты симулятора в конце концов приведут к единственному наиболее вероятному ответу на вопрос, что именно произойдет.

Тогда где предел? Возможно ли, что «оракул» со способностями как у джинна так хорошо справится со своей работой, что всегда с вероятностью 100 % предскажет определенный результат, оставляя для прочих результатов нулевую вероятность? В этом случае можно было бы сказать, что ему известны все обстоятельства, сопровождающие падение кости и приводящие к данному результату, и что у него имеется полный ответ на вопрос, почему именно эта грань кубика оказалась сверху.

Хотя задача кажется сложной, не очевидно, что ее невозможно решить в принципе. Даже если у вас нет необходимой информации и ноу-хау для того, чтобы предсказать, что случится, интуитивно кажется очевидным, что такая информация и ноу-хау существуют, поскольку Вселенная обладает этой информацией и устраивает так, что случается именно это событие, а не какое-то другое. Для этого должна быть причина, не так ли? Великие философы Просвещения — Декарт, Спиноза и Лейбниц — расходились во мнениях по многим вопросам, но в одном они были согласны: всегда есть причина, по которой происходит данное — а не какое-то другое — событие. Лейбниц писал об этом в своем труде «Монадология»: «Ни одно явление не может оказаться истинным или действительным, ни одно утверждение справедливым — без достаточного основания, почему дело обстоит именно так, а не иначе». Сделать точный прогноз или найти идеальное объяснение может оказаться делом чрезвычайно сложным, но это всегда должно быть возможным.

Когда что-то случается, мы часто говорим, что оно произошло «без причины», но на самом деле мы редко имеем в виду буквально это. Да и впрямь: можете ли вы вообразить действие без причины? Некоторые величайшие умы пытались сделать это, но безуспешно, и тогда они решили, что это невозможно.

 

И тем не менее согласно квантовой механике — вероятно, наиболее фундаментальной теории физики — такое возможно.

…Когда ты собираешься бросить кость, ты задумываешься над тем, как такая простая вещь — всего один бросок кости — может, подобно колесу фортуны, круто изменить твою судьбу. Всего 6 цифр на гранях каждой кости, ничего между ними, никаких двусмысленностей. Отброшены стратегия, мастерство, история, и сложность мироустройства свелась к предельной простоте.

Ты бросаешь, и твоя судьба решена.

Вообразите, что кость состоит из одной элементарной частицы, а не из огромного числа частиц. В частности, попытайтесь вообразить, что кость имеет только два свойства: определенная цифра на верхней грани (1–6) и местоположение кости. Каждое из этих свойств соответствует вопросу, который можно задать кости, или, иными словами, виду измерения, которое можно произвести. Например, мы можем задать следующие вопросы:

Вопрос № 1 (В1): Какая грань у тебя верхняя?

Вопрос № 2 (В2): Где в точности ты находишься?

И кость может дать такие ответы:

Ответ № 1 (О1): У меня на верхней грани шестерка.

Ответ № 2 (О2): Мои координаты [широта, долгота, высота]: [27,1789335252, 78,0224962785, 1,232432].

Эта идея приводит нас к важному определению, имеющему далеко идущие последствия. Назовем квантовым состоянием физической системы полный набор определенных фактов, которые система, если ее спросить, сообщит о себе. Так, квантовое состояние нашего кубика будет определяться двумя ответами О1 и О2 и кратко записываться следующим образом: [О1; О2] = [6 ↑; 27,1789335252, 78,0224962785, 1,232432], где точка с запятой разделяет различные поставленные вопросы, на которые получены ответы.

Здесь ключевым обстоятельством является то, что эти ответы содержат всю определенную информацию, которую кубик должен предоставить. Это кажется совершенно тривиальным утверждением, но — внимание! — из этого утверждения о фундаментальной простоте системы следует огромное число результатов, противоречащих интуиции. Посмотрим, каких именно.

Во-первых, ясно, что есть разные состояния, в которых наша кость может находиться. Чтобы их описать, вообразим, что мы получили полный (включены все возможности) перечень взаимоисключающих ответов (только один из них может быть истинным для системы в каждый заданный момент времени) на каждый вопрос. Для кости это будет означать 6 возможностей в О1 — одна из шести граней вверху — и все ее (кости) возможные положения в ответах О2. Квантовое состояние кости может соответствовать любой одной паре из набора всех возможных ответов, и все возможные определенные ответы, которые может дать кость, находятся где-то в этом перечне.

Теперь мы подошли к ключевому моменту. Хотя мы включили в список всего два вопроса, что будет, если мы все-таки пойдем дальше и зададим еще один вопрос (назовем его В3) — например, какая сторона кубика смотрит на восток? И теперь у нас появилась головоломка: В3 — справедливый вопрос, соответствующий эксперименту, который мы можем реально провести. Мы можем взглянуть на кубик с востока и увидеть, какая грань обращена к нам. То есть кубик должен дать нам ответ.

И он дает. Но ответ не может быть теперь определенным, не так ли? У нас уже есть исчерпывающий список вопросов, на которые мы получаем определенные ответы, и вопроса В3 в нем нет! Следовательно, должны быть ситуации, в которых ответом могла бы быть двойка, тройка или четверка. (Могла бы быть и шестерка, даже в том случае, когда мы знали бы, что шестерка на верхней грани, а не на восточной!) И это значит, что возникает неустранимая неопределенность в том, какой ответ даст наша игральная кость.

Это не значит, что все возможности одинаково вероятны. Квантовая механика дает очень прозрачное математическое правило (называемое правилом Борна) для определения того, насколько правдоподобен каждый ответ для данного состояния кубика. То есть оно дает возможность определить вероятность каждого ответа еще до проведения измерений.

Таким образом, вероятности появились в совершенно, казалось бы, простом вопросе о состоянии системы, о которой мы знаем всё, что нужно знать.

Нам невероятно трудно представить физические вещи, которые в этом смысле принципиально просты. Когда мы представляем себе нашу действительно простую квантовую кость с шестеркой на верхней грани, мы, естественно воображаем неподвижный кубик, у которого грань (скажем) с четверкой смотрит на восток, с двойкой — на юг и т. д. Но это неправильно! Состояние покоя было бы свойством обладания нулевой скоростью, и ориентация на восток грани с четверкой — тоже была бы свойством. Однако кубик имеет только два свойства — его местоположение и определенная цифра на верхней грани. Это ограничение сильно противоречит нашей интуиции. Когда мы определяем свойство, которое некий объект может иметь, легко забыть, что это свойство изобретено нами, поскольку обычно, изобретая свойство, мы в глубине души уверены, что объект либо имеет это свойство, либо не имеет. И когда с этим свойством нам всё становится ясно, то препятствия к переходу к другому свойству, и еще к одному, и еще… вроде как исчезают, и, похоже, явного предела количеству свойств, которые мы можем придумать, нет. Но квантовая реальность устроена иначе.

Редакция

Электронная почта: polit@polit.ru
VK.com Twitter Telegram YouTube Яндекс.Дзен Одноклассники
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2024.