Полiт.ua Государственная сеть Государственные люди Войти
30 апреля 2017, воскресенье, 10:17
Facebook Twitter LiveJournal VK.com RSS

НОВОСТИ

СТАТЬИ

АВТОРЫ

ЛЕКЦИИ

PRO SCIENCE

СКОЛКОВО

РЕГИОНЫ

26 сентября 2016, 17:20

Структуру белков будет определять рентгеновский лазер

МФТИ

Международная команда ученых, научилась определять пространственную структуру белка, полученную на рентгеновском лазере, используя атомы серы в его составе, сообщается в пресс-релизе Московского физико-технического института. Разработка стала продолжением проекта группы профессора Вадима Черезова, профессора МФТИ и Университета Южной Калифорнии, по созданию эффективной методики исследования рецепторных белков.

Рецепторные белки (GPCR) обеспечивают передачу сигналов внутрь клеток, позволяя им получать информацию об окружающей среде и взаимодействовать друг с другом. Нарушения в работе этих белков приводят к тяжелым заболеваниям. Разработка лекарств, восстанавливающих нормальное функционирование рецепторов, невозможна без точного понимания механизмов работы GPCR, которые, подобно остальным белкам, определяются их пространственной структурой, иными словами тем, как свернут белок.

Наиболее подходящим методом для решения этой задачи является рентгеновская кристаллография. Для рентгеновских лучей кристалл является трехмерной дифракционной решеткой, в которой излучение рассеивается на атомах. Отдельной проблемой при этом является получение кристалла белка. Для этого рецепторные белки необходимо извлечь из мембраны клетки и поместить в специальную липидную среду. Затем, подбирая температуру и вещества ускоряющие процесс осаждения, белок кристаллизуют.

Конечная структура аденозинового А2А рецептора, изучавшегося в данной работе. Жёлтые сферы — атомы серы, синие сферы — молекулы воды, синими полосами показана липидная мембрана. Илл.: МФТИ

Неприятная особенность GPCR состоит в том, что это очень подвижные и динамичные молекулы, часто меняющие свою пространственную структуру. Как следствие, для них сложно вырастить крупные кристаллы, необходимые для классической процедуры дифракции. Она предполагает достаточно продолжительное облучение кристалла под разными углами. Рентген ионизирует атомы, тем самым разрушая молекулы белка. Чтобы компенсировать этот эффект как раз и нужны большие кристаллы, размером в несколько десятков микрон.

Решение этой проблемы стало возможно благодаря новой экспериментальной методике рентгеновской дифракции. Ее разработкой в течение последних нескольких лет занимается международная команда ученых из Университетов штата Аризоны и Цюриха, Национальной лаборатории SLAC в Стэнфорде, института iHuman при Университете в Шанхае, Института Биофизики Китайской Академии Наук, центра CFEL в Гамбурге, Университета Южной Калифорнии и МФТИ. Одним из лидеров этого коллектива является Вадим Черезов, профессор университета Южной Калифорнии и МФТИ.

В основе методики лежит использование рентгеновских источников нового поколения — лазеров на свободных электронах. Излучение от них настолько мощное, что оно полностью ионизирует атомы в кристалле при прохождении через него, по сути, разрушая его. Однако, за счет очень короткого времени лазерного импульса (порядка нескольких фемтосекунд, 10-15 с), получается заснять дифракционную картину до того, как атомы сдвинуться с места. Благодаря этому ученым удалось обойти трудности, связанные с размерами кристаллов.

Поскольку кристалл разрушается моментально, то померить его в различных ориентациях невозможно. Для решения этой задачи ученые собирают и обрабатывают данные от множества кристаллов. С помощью специального инжектора липидная среда, в которой находятся кристаллы, подается под рентгеновский импульс. Весь процесс напоминает выдавливание зубной пасты из тюбика.

Схема эксперимента по фемтосекундной рентгеновской кристаллографии. С помощью инжектора (1) кристаллы белка, растворённые в липидной среде (2) просвечиваются рентгеновским лучом (5), после чего рассеянный луч попадает на детектор (6). Давление в инжекторе создаётся с помощью гидравлического поршня (3), для сохранения прямой формы липидной струи специально подают поток газа (4). Илл.: МФТИ

В результате получаются миллионы дифракционных изображений, которые необходимо обработать: отобрать изображения с кристаллами, найти их ориентацию, затем собрать в трехмерную дифракционную картину. Для ее расшифровки нужно знать два параметра: амплитуду и фазу отраженного излучения. Значения амплитуд измеряются на детекторе в ходе эксперимента, а вот определение фазы – это нетривиальная задача, для решения которой существует несколько методов. Например, если нам известен некий белок, обладающий похожей структурой, то можно использовать его в качестве первого приближения. Очевидно, что такое возможно не во всех случаях.

Другой популярный метод – использовать эффект известный как аномальное рассеяние. Он возникает, когда длина рентгеновской волны близка к энергии электронного перехода в атомах, в результате происходит поглощение и переизлучение волны. Как следствие, меняются амплитуды и фазы. Если очень точно измерить амплитуды, то на основе разности между ними становится возможным восстановить фазы. Однако большинство атомов, входящих в состав белков (углерод, кислород, азот) для этого не подходят.  Достаточно тяжелым элементов, встречающимся практически во всех белках, является сера. Именно ей и воспользовались исследователи в текущей работе для восстановления фазы.

Для этого потребовалась разработка специального программного обеспечения. Из 7 миллионов полученных изображений необходимо было отобрать те, которые имеют диффракционные отражения. Затем определить ориентацию кристалла и интенсивность всех отражений, после чего собрать получившиеся данные вместе. В итоге было отобрано 600 тысяч дифракционных картин, используя которые, получилось восстановить структуру белка с разрешением в 2,5 ангстрем. Соединив эти данные с данными, полученными при другой длине волны рентгеновского излучения, у исследователей получилось поднять разрешение до 1,9 ангстрем. Такая точность позволяет не только определять структуры рецепторных белков с высокой точностью, но и увидеть молекулы воды и липидов, которые окружают их, что имеет огромное значение для понимания механизма работы белка и моделирования его взаимодействия с другими веществами.

Из существующих 800 рецепторных белков на сегодняшний день нам известны структуры только 34. Разработанная учеными экспериментальная методика позволит значительно ускорить их исследования. Что в свою очередь поможет в создании новых эффективных препаратов против огромного количества заболеваний.

Подробное описание работы опубликовано в журнале Science Advances.

Обсудите в соцсетях

Система Orphus
Loading...
Подпишитесь
чтобы вовремя узнавать о новых спектаклях и других мероприятиях ProScience театра!
3D Apple Big data Dragon Facebook Google GPS IBM iPhone MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi Адыгея Александр Лавров альтернативная энергетика Анастасия Волочкова «Ангара» антибиотики античность археология архитектура астероиды астрофизика аутизм Байконур бактерии бедность библиотека онлайн библиотеки биология биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера бозон Хиггса британское кино Византия визуальная антропология викинги вирусы Вольное историческое общество Вселенная вулканология Выбор редакции гаджеты генетика география геология геофизика глобальное потепление грибы грипп дельфины демография дети динозавры Дмитрий Страшнов ДНК Древний Египет естественные и точные науки животные жизнь вне Земли Западная Африка защита диссертаций землетрясение змеи зоопарк зрение Иерусалим изобретения иммунология инновации интернет инфекции информационные технологии искусственный интеллект ислам историческая политика история история искусства история России история цивилизаций История человека. История институтов исчезающие языки карикатура католицизм квантовая физика квантовые технологии КГИ киты климатология комета кометы компаративистика компьютерная безопасность компьютерные технологии космический мусор космос криминалистика культура культурная антропология лазер Латинская Америка лексика лженаука лингвистика Луна мамонты Марс математика материаловедение МГУ медицина междисциплинарные исследования местное самоуправление метеориты микробиология Минобрнауки мифология млекопитающие мобильные приложения мозг моллюски Монголия музеи НАСА насекомые неандертальцы нейробиология неолит Нобелевская премия НПО им.Лавочкина обезьяны обучение общество О.Г.И. онкология открытия палеолит палеонтология память папирусы паразиты педагогика планетология погода подготовка космонавтов популяризация науки право преподавание истории продолжительность жизни происхождение человека Протон-М психоанализ психология психофизиология птицы РадиоАстрон ракета растения РБК РВК РГГУ регионоведение религиоведение рептилии РКК «Энергия» робототехника Роскосмос Роспатент русский язык рыбы сердце сериалы Сингапур сланцевая революция смертность СМИ Солнце сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры торнадо транспорт ураган урбанистика фармакология Фестиваль публичных лекций физика физиология физическая антропология финансовый рынок фольклор химия христианство Центр им.Хруничева школа школьные олимпиады эволюция эволюция человека экология эмбриональное развитие эпидемии этика этнические конфликты этология Юпитер ядерная физика язык

Редакция

Электронная почта: politru.edit1@gmail.com
Адрес: 129343, Москва, проезд Серебрякова, д.2, корп.1, 9 этаж.
Телефон: +7 495 980 1894.
Стоимость услуг Полит.ру
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003г. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2014.