Полiт.ua Государственная сеть Государственные люди Войти
30 апреля 2017, воскресенье, 10:17
Facebook Twitter LiveJournal VK.com RSS

НОВОСТИ

СТАТЬИ

АВТОРЫ

ЛЕКЦИИ

PRO SCIENCE

СКОЛКОВО

РЕГИОНЫ

18 октября 2016, 18:39

Два лазерных луча исследуют микрокристаллы белков

Схематичное изображение установки CARS
Схематичное изображение установки CARS
МФТИ

Ученые из МФТИ и Объединенного института ядерных исследований увеличили точность обнаружения ценных кристаллов белков, размер которых ограничен парой микрон. Именно такие кристаллы используются сейчас для изучения структуры мембранных белков, знание которой очень важно для фармацевтических исследований. О результатах работы сообщается в пресс-релизе Московского физико-технического института.

Мембранные белки переносят вещества, энергию и сигналы непосредственно внутрь клеток, позволяя им «общаться». Мембранные белки-рецепторы – самые популярные мишени для лекарств. Активируя или деактивируя рецепторы, правильно подобранные препараты могут регулировать физиологические процессы, которые были нарушены во время болезни. Знание структуры белка во много раз удешевляет и ускоряет поиск лекарств. Обычно ее изучают методом рентгеновской дифракции, для которого необходимо вырастить большой однородный кристалл белка. Но получить кристалл мембранного белка очень сложно.

Сейчас для изучения мембранных белков применяют рентгеновские лазеры на свободных электронах. Их мощности достаточно, чтобы использовать совсем небольшие кристаллы. Но выращивая такие кристаллы, сложно понять, какого качества они выросли и выросли ли вообще. Для предварительной проверки качества применяется техника SONICC, основанная на наложении изображений, полученных методами SHG (который способен «видеть» упорядоченные кристаллы сквозь неупорядоченную среду, где они растут) и UV-TPEF (особый вид микроскопии, который показывает только специальные аминокислоты, которые входят в состав молекулы белка). Точности этого метода, однако, зачастую оказывается недостаточно для детекции кристаллов размером около микрона. Ученым из МФТИ и ОИЯИ удалось превзойти метод SONICC (точнее, его принципиального компонента SHG), показав при этом чувствительность к тонким особенностям структуры белка.

Схематичное изображение установки CARS. Два лазерных луча (лазер 1 и лазер 2) скрещиваются на образце. Сигнал, полученный от высвеченной области, проходит через множество фильтров (в том числе поляризатор) и идёт на детектор. Дальнейшая обработка позволяет сказать, есть в данной области белковый кристалл или нет. Илл.: МФТИ

Ученые применили метод P-CARS – особый вид спектроскопии. Для применения метода требуется два лазера, лучи которых скрещивают на образце с белковым кристаллом. Полученный сигнал фильтруется оптической системой, позволяя отличить области с белковым кристаллом от небелкового окружения. Сканируя отдельные точки образца по очереди, исследователи получают трехмерную картинку кристалла.

«Научному сообществу широко известна CARS-микроскопия, применяемая в основном для визуализации процессов, происходящих в клетке. Метод CARS также можно настроить для того, чтобы детектировать специфичные только для белков химические связи, получая возможность видеть «сквозь» среду, в которой растут кристаллы. Мы использовали метод на модельных белках бактериородопсине (мембранный белок) и лизоциме (водорастворимый белок)», – пояснил Алексей Власов, сотрудник Лаборатории перспективных исследований мембранных белков МФТИ.

Преимущество метода CARS перед SHG (основным компонентом SONICC): кристаллы лизоцима размером около 1 микрона легко заметны при использовании CARS (справа), однако не видны при применении SHG (слева). Фото: МФТИ

Оказалось, что в случае кристаллов бактериородопсина можно заранее заметить распространенный дефект кристалла, так называемое двойникование, что невозможно при использовании SHG. Двойникование часто не позволяет узнать структуру белка с достаточной точностью, усложняя поиск лекарств, однако заметить этот дефект для микроскопических кристаллов до сих пор можно было только после проведения дорогостоящих рентгеновских исследований. Метод CARS позволяет обнаружить его быстрее и проще. На примере кристаллов лизоцима ученые показали существенное преимущество метода CARS, продемонстрировав, что в некоторых случаях он может видеть кристаллы, которые не может заметить SONICC.

Работа опубликована в престижном журнале Journal of American Chemical Society.

Обсудите в соцсетях

Система Orphus
Loading...
Подпишитесь
чтобы вовремя узнавать о новых спектаклях и других мероприятиях ProScience театра!
3D Apple Big data Dragon Facebook Google GPS IBM iPhone MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi Адыгея Александр Лавров альтернативная энергетика Анастасия Волочкова «Ангара» антибиотики античность археология архитектура астероиды астрофизика аутизм Байконур бактерии бедность библиотека онлайн библиотеки биология биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера бозон Хиггса британское кино Византия визуальная антропология викинги вирусы Вольное историческое общество Вселенная вулканология Выбор редакции гаджеты генетика география геология геофизика глобальное потепление грибы грипп дельфины демография дети динозавры Дмитрий Страшнов ДНК Древний Египет естественные и точные науки животные жизнь вне Земли Западная Африка защита диссертаций землетрясение змеи зоопарк зрение Иерусалим изобретения иммунология инновации интернет инфекции информационные технологии искусственный интеллект ислам историческая политика история история искусства история России история цивилизаций История человека. История институтов исчезающие языки карикатура католицизм квантовая физика квантовые технологии КГИ киты климатология комета кометы компаративистика компьютерная безопасность компьютерные технологии космический мусор космос криминалистика культура культурная антропология лазер Латинская Америка лексика лженаука лингвистика Луна мамонты Марс математика материаловедение МГУ медицина междисциплинарные исследования местное самоуправление метеориты микробиология Минобрнауки мифология млекопитающие мобильные приложения мозг моллюски Монголия музеи НАСА насекомые неандертальцы нейробиология неолит Нобелевская премия НПО им.Лавочкина обезьяны обучение общество О.Г.И. онкология открытия палеолит палеонтология память папирусы паразиты педагогика планетология погода подготовка космонавтов популяризация науки право преподавание истории продолжительность жизни происхождение человека Протон-М психоанализ психология психофизиология птицы РадиоАстрон ракета растения РБК РВК РГГУ регионоведение религиоведение рептилии РКК «Энергия» робототехника Роскосмос Роспатент русский язык рыбы сердце сериалы Сингапур сланцевая революция смертность СМИ Солнце сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры торнадо транспорт ураган урбанистика фармакология Фестиваль публичных лекций физика физиология физическая антропология финансовый рынок фольклор химия христианство Центр им.Хруничева школа школьные олимпиады эволюция эволюция человека экология эмбриональное развитие эпидемии этика этнические конфликты этология Юпитер ядерная физика язык

Редакция

Электронная почта: politru.edit1@gmail.com
Адрес: 129343, Москва, проезд Серебрякова, д.2, корп.1, 9 этаж.
Телефон: +7 495 980 1894.
Стоимость услуг Полит.ру
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003г. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2014.