Полiт.ua Государственная сеть Государственные люди Войти
23 октября 2017, понедельник, 05:37
Facebook Twitter LiveJournal VK.com RSS

НОВОСТИ

СТАТЬИ

АВТОРЫ

ЛЕКЦИИ

PRO SCIENCE

СКОЛКОВО

РЕГИОНЫ

10 ноября 2016, 14:55

Физик указал путь к «комнатной» сверхпроводимости

Конденсат Бозе – Эйнштейна
Конденсат Бозе – Эйнштейна
NIST/JILA/CU-Boulder

Сделанные российским физиком расчеты говорят, что сверхпроводимость при комнатной температуре возможна, и искать ее следует в «длинных страйпах» – локальных одномерных деформациях кристаллической решетки. Об этом сообщает пресс-релиз Института математических проблем биологии РАН.

Основная на данный момент теория сверхпроводников – теория Бардина – Купера – Шриффера, известная как теория БКШ, была сформулирована к началу 1970-х. Она предусматривает невозможность возникновения сверхпроводимости при температуре выше нескольких кельвинов (около −270°C). Однако в последующие десятилетия физикам-экспериментаторам удалось добиться эффекта сверхпроводимости и при значительно более высоких температурах. Уже в 1986 году Карл Александр Мюллер и Георг Беднорц нашли первое соединение из класса высокотемпературных сверхпроводящих купратов La2-xBaxCuO4 (при −243°C). А в 2015 году ученые показали, что сероводород становится сверхпроводящим при температуре 203 кельвина (−70,15 °C), правда, для это нужно давление в 150 гигапаскалей (около 1,5 млн. атмосфер). Подробнее о борьбе ученых за сверхпроводимость при комнатной температуре можно прочитать в нашем специальном очерке.

Эти эксперименты вызвали  множество вариантов новых объяснений механизма сверхпроводимости. На данный момент доктором физико-математических наук Виктором Лахно, руководителем лаборатории квантово-механических систем Института математических проблем биологии РАН рассчитана возможность поддержки сверхпроводимости при комнатной температуре в страйпах. С помощью современных микроскопов можно увидеть, что переходу в сверхпроводящее состояние в кристаллической решетке вещества сопутствует образование страйпов. Страйпы – это локальные одномерные деформации решетки. Они короткие – несколько нанометров – и сверхпроводящие. «Согласно полученным расчетам в страйпах возможно существование сверхпроводящего бозе-конденсата», – прокомментировал профессор Виктор Лахно. Результаты в корне отличаются от того, что предписывает теория БКШ.

Конденсат Бозе – Эйнштейна – это пятое агрегатное состояние материи, которое было предсказано Альбертом Эйнштейном в 1925 году на основе работ индийского физика Бозе. Сам конденсат был получен через 70 лет, в 1995 году Корнеллом и Виманом. Ученые использовали газ из атомов рубидия, охлажденный до практически абсолютного нуля (1,7×10-7 кельвинов). Бозе-конденсат характеризуется тем, что все частицы движутся согласованно. Они формируют одну квантово-механическую волну и ведут себя как одна гигантская частица. Все они одновременно находятся в одном и том же месте, и каждая из них «размазана» по всей области пространства. Лахно математически доказал, что квантовый бозе-газ из трансляционно-инвариантных биполяронов в одномерном проводнике может образовывать бозе-конденсат.

Полярон – квазичастица, состоящая из электронов и возмущений, которые он производит, пролетая сквозь кристаллическую решетку. Такие возмущения называют фононами. Ввел понятие полярона советский физик Соломон Пекар в 1946 году, в дальнейшем теория поляронов получила важное развитие в работах Александра Тулуба, нашедшего новое решение задачи о поляроне в случае сильного взаимодействия электрона с решеткой. Биполярон это два полярона, связанных между собой фононным взаимодействием. Виктору Лахно удалось показать, что биполярон может обладать свойством трансляционной инвариантности, то есть представлять собой плоскую волну, бегущую в кристаллической решетке. Ученый теоретически доказал, что трансляционно-инвариантные биполяроны могут создавать устойчивый бозе-конденсат в страйпах даже при комнатной температуре. А значит сверхпроводимость при этих температурах возможна.

Ученый объясняет: «Ранее считалось, что сверхпроводимость возможна только в коротких страйпах, а в длинных она исчезает, поэтому вопрос о создании искусственных страйпов большой длины никогда не возникал и не ставился. Но результаты данного исследования, напротив, говорят, что высокотемпературный сверхпроводник должен включать в себя длинные страйпы, которые могут быть созданы с использованием методов современной нанотехнологии». Теперь дело за практиками – нужно создать материалы с длинными страйпами. Сейчас на современном уровне нанотехнологий это вполне реально.

Работа Виктора Лахно опубликована в журнале SpringerPlus.

Обсудите в соцсетях

Система Orphus
Loading...
Подпишитесь
чтобы вовремя узнавать о новых спектаклях и других мероприятиях ProScience театра!
3D Apple Big data Dragon Facebook Google GPS IBM iPhone MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi Адыгея Александр Лавров альтернативная энергетика Анастасия Волочкова «Ангара» антибиотики античность археология архитектура астероиды астрофизика аутизм Байконур бактерии бедность библиотека онлайн библиотеки биология биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера бозон Хиггса британское кино Византия визуальная антропология викинги вирусы Вольное историческое общество Вселенная вулканология Выбор редакции гаджеты генетика география геология геофизика глобальное потепление грибы грипп дельфины демография дети динозавры Дмитрий Страшнов ДНК Древний Египет естественные и точные науки животные жизнь вне Земли Западная Африка защита диссертаций землетрясение змеи зоопарк зрение Иерусалим изобретения иммунология инновации интернет инфекции информационные технологии искусственный интеллект ислам историческая политика история история искусства история России история цивилизаций История человека. История институтов исчезающие языки карикатура католицизм квантовая физика квантовые технологии КГИ киты климатология комета кометы компаративистика компьютерная безопасность компьютерные технологии космический мусор космос криминалистика культура культурная антропология лазер Латинская Америка лексика лженаука лингвистика Луна мамонты Марс математика материаловедение МГУ медицина междисциплинарные исследования местное самоуправление метеориты микробиология Минобрнауки мифология млекопитающие мобильные приложения мозг моллюски Монголия музеи НАСА насекомые неандертальцы нейробиология неолит Нобелевская премия НПО им.Лавочкина обезьяны обучение общество О.Г.И. онкология открытия палеолит палеонтология память папирусы паразиты педагогика планетология погода подготовка космонавтов популяризация науки право преподавание истории продолжительность жизни происхождение человека Протон-М психоанализ психология психофизиология птицы РадиоАстрон ракета растения РБК РВК РГГУ регионоведение религиоведение рептилии РКК «Энергия» робототехника Роскосмос Роспатент русский язык рыбы сердце сериалы Сингапур сланцевая революция смертность СМИ Солнце сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры торнадо транспорт ураган урбанистика фармакология Фестиваль публичных лекций физика физиология физическая антропология финансовый рынок фольклор химия христианство Центр им.Хруничева школа школьные олимпиады эволюция эволюция человека экология эмбриональное развитие эпидемии этика этнические конфликты этология Юпитер ядерная физика язык

Редакция

Электронная почта: politru.edit1@gmail.com
Адрес: 129090, г. Москва, Проспект Мира, дом 19, стр.1, пом.1, ком.5
Телефон: +7 495 980 1894.
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003г. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2014.