19 марта 2024, вторник, 12:24
TelegramVK.comTwitterYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

21 февраля 2017, 11:09

Российские ученые объяснили неравномерную окраску пятнистых животных

Сотрудники Института биоорганической химии имени академиков М. М. Шемякина и Ю. А. Овчинникова РАН совместно с коллегами из НИИ физико-химической биологии имени А. Н. Белозерского МГУ и ФИАН предложили новый механизм самоорганизации динамических пространственных структур в эмбриогенезе, сообщается в пресс-релизе ИБХ РАН.

С помощью математического моделирования авторы показали, что такая самоорганизация может происходить благодаря существенной разнице в скоростях взаимного проникновения (диффузии) белков-морфогенов, которое возникает из-за разного связывания биологически активных веществ (морфогенов) на внеклеточном веществе. Опубликованные в журнале PLOS ONE результаты работы создают предпосылки для развития других моделей, описывающих возникновение многообразия форм на ранних стадиях развития организма. Исследования поддержаны Российским научным фондом.

​На ранних стадиях развития органы эмбриона состоят из множества одинаковых клеток, которые затем становятся сложными пространственными структурами и их размеры намного превышают размеры самих клеток. Каким образом это происходит? Считается, что подобные структуры формируются в результате динамической самоорганизации, в которой важную роль играют белки-морфогены, выделяемые клетками и распространяющиеся на большие расстояния. Одно из необходимых условий самоорганизации – нахождение системы вдали от состояния  равновесия, то есть в условиях сильной диссипации (рассеяния) энергии. Поэтому подобные структуры, образующиеся в ходе самоорганизации, часто называют «диссипативными».

 «Усложнение эмбриона можно упрощенно свести к его закономерному подразделению на территории, состоящие из по-разному дифференцированных клеток, то есть тех, которые обладают разными функциями, играют разные роли в организме. Во многих случаях инструкции к такой упорядоченной в пространстве дифференцировке клетки тканей зародыша получают благодаря образованию диссипативных структур. Они, как правило, выглядят как градиенты концентраций белков-морфогенов. В результате клетки эмбриона, расположенные на разных расстояниях вдоль такого градиента, подвергаются воздействию  разных  концентраций морфогена, например, гормонов и, таким образом, получают сигналы к дифференцировке в разных направлениях», – рассказывает Андрей Зарайский, руководитель лаборатории молекулярных основ эмбриогенеза ИБХ РАН.

Илл.:  Снежана Мажекенова/ИБХ РАН

Известно, что сложные структуры возникают, когда есть как минимум два диффундирующих и нелинейно взаимодействующих морфогена с резко различающимися  коэффициентами диффузии, то есть скоростью проникновения одного вещества в другое. Однако реальные белки-морфогены имеют близкие размеры и примерно одинаковую подвижность в водном растворе.

«За счет чего достигается необходимая для самоорганизации диссипативных структур разница между скоростями диффузии морфогенов? Этот вопрос долгое время оставался открытым, – рассказывает Алексей Нестеренко, первый автор работы, сотрудник лаборатории молекулярных основ эмбриогенеза ИБХ РАН и Института физико-химической биологии им. А.Н. Белозерского МГУ. – Ранее мы показали, что в процессе диффузии в межклеточном пространстве разные морфогены могут с разной силой связываться с протеогликанами, особыми белками внеклеточного матрикса (вещества)».

Исследователи предположили, что именно эта разница в неспецифическом связывании морфогенов может обеспечивать значительную разницу в их скоростях диффузии.

«С помощью математической модели мы продемонстрировали, что в системе из двух одинаково подвижных морфогенов добавление условия адсорбции одного из них на внеклеточном матриксе  действительно дает возможность получать пространственные структуры по механизму динамической самоорганизации», – рассказывает Максим Кузнецов, один из авторов работы, сотрудник Физического института им. П. Н. Лебедева.

Фото: Mario Rubio García/Flickr

Применение новой модели авторы рассмотрели на различных примерах, в том числе на окраске сомика-кукушки. «Эта рыба из семейства перистоусых окрашена в желтый цвет с многочисленными черными пятнами, которые разбросаны по всему телу. Разработанная нами модель хорошо объясняет формирование и закономерное уменьшение пятен его окраски по направлению от хвоста к голове», – говорит Дарья Короткова, один из авторов, студентка МГУ, выполняющая дипломную работу в Лаборатории молекулярных основ эмбриогенеза.

Разработанный подход создает предпосылки для развития математических моделей всё более разнообразных морфологических форм в эмбриогенезе. Сейчас исследователи работают над его дальнейшим экспериментальным подтверждением.

Редакция

Электронная почта: polit@polit.ru
VK.com Twitter Telegram YouTube Яндекс.Дзен Одноклассники
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2024.