Полiт.ua Государственная сеть Государственные люди Войти
17 декабря 2017, воскресенье, 05:31
Facebook Twitter LiveJournal VK.com RSS

НОВОСТИ

СТАТЬИ

АВТОРЫ

ЛЕКЦИИ

PRO SCIENCE

СКОЛКОВО

РЕГИОНЫ

Машинное обучение помогло моделировать межатомные взаимодействия

МФТИ

Группа ученых из Московского физико-технического института, НИИ автоматики имени Н. Л. Духова и Сколтеха под руководством Артема Оганова применила метод машинного обучения для моделирования поведения алюминия и урана при различных температурах, давлениях и в разных фазовых состояниях. Моделирование химических систем позволяет предсказывать их свойства в различных условиях до проведения экспериментов, что в дальнейшем даёт возможность воплотить в реальность наиболее перспективные материалы. Результаты опубликованы в журнале Scientific Reports, кратко о них рассказывает пресс-релиз МФТИ.

Активное развитие науки последних ста лет привело к наличию удивительного разнообразия органических и неорганических соединений, белковых и липидных структур, множества схем химических реакций. Однако чем больше новых структур и молекул, тем больше времени требуется для того, чтобы исследовать их строение, биохимические и физические свойства, изучить модели их поведения в различных условиях и возможные реакции взаимодействия с другими веществами. На данный момент изучать вышеперечисленные свойства возможно с помощью компьютерного моделирования.

Сейчас самый популярный метод моделирования основан на использовании набора параметров, описывающих рассматриваемую биохимическую систему: длины связей в молекулах, углы между атомами, заряды и так далее – так называемый «метод силовых полей». Однако использование этого метода не позволяет точно воспроизводить квантово-механические силы, которые действуют в молекулах. Кроме того, точные квантово-механические расчеты занимают много времени, не позволяют рассчитывать свойства больших систем и ограничиваются парой сотен атомов. Преодолеть это препятствие помогают модели машинного обучения. Обучаясь на относительно небольшой выборке данных (получаемых в квантово-механических расчетах), эти модели затем могут быть использованы вместо квантово-механических расчетов, поскольку обладают такой же точностью, но требуют примерно в тысячу раз меньше вычислительных ресурсов.

Ученые применили машинное обучение для моделирования межатомных взаимодействий в кристаллах и расплавах двух элементов: алюминия и урана. Алюминий является хорошо изученным металлом с известными физико-химическими свойствами. Уран был выбран, наоборот, из-за наличия разнящихся опубликованных данных о его физико-химических свойствах и желания исследователей эти свойства уточнить.

В ходе данной работы с помощью обученной модели исследователи изучали такие свойства, как плотность фононных состояний, энтропия и температура плавления алюминия. Иван Круглов, сотрудник лаборатории компьютерного дизайна материалов МФТИ, рассказывает: «Величины сил межмолекулярных взаимодействий атомов в кристаллах можно успешно применять для предсказания поведения атомов этого элемента при других температурах и в других фазовых состояниях, а также, наоборот, — зная свойства системы в жидком фазовом состоянии, узнать поведение атомов в кристаллической решетке. Таким образом, появляется возможность расчета фазовой диаграммы урана на основании данных о его кристаллической структуре. Показывая состояние вещества в зависимости от давления и температуры, фазовые диаграммы позволяют определять возможности и границы применения элементов».

Основным критерием достоверности виртуально полученных данных стало их сравнение с экспериментальной информацией. Использованный метод моделирования показал хорошую точность. Информация, полученная методом машинного обучения, имеет меньшие погрешности, чем методы моделирования, использующие силовые поля. Данное исследование заключается в повышении скорости и точности моделирования систем атомов методом машинного обучения, предложенным авторами в 2016 году.

Обсудите в соцсетях

Система Orphus
Loading...
Подпишитесь
чтобы вовремя узнавать о новых спектаклях и других мероприятиях ProScience театра!
3D Apple Big data Dragon Facebook Google GPS IBM iPhone MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi Адыгея Александр Лавров альтернативная энергетика Анастасия Волочкова «Ангара» антибиотики античность археология архитектура астероиды астрофизика аутизм Байконур бактерии бедность библиотека онлайн библиотеки биология биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера бозон Хиггса британское кино Византия визуальная антропология викинги вирусы Вольное историческое общество Вселенная вулканология Выбор редакции гаджеты генетика география геология геофизика глобальное потепление грибы грипп дельфины демография дети динозавры Дмитрий Страшнов ДНК Древний Египет естественные и точные науки животные жизнь вне Земли Западная Африка защита диссертаций землетрясение змеи зоопарк зрение Иерусалим изобретения иммунология инновации интернет инфекции информационные технологии искусственный интеллект ислам историческая политика история история искусства история России история цивилизаций История человека. История институтов исчезающие языки карикатура католицизм квантовая физика квантовые технологии КГИ киты климатология комета кометы компаративистика компьютерная безопасность компьютерные технологии космический мусор космос криминалистика культура культурная антропология лазер Латинская Америка лексика лженаука лингвистика Луна мамонты Марс математика материаловедение МГУ медицина междисциплинарные исследования местное самоуправление метеориты микробиология Минобрнауки мифология млекопитающие мобильные приложения мозг моллюски Монголия музеи НАСА насекомые неандертальцы нейробиология неолит Нобелевская премия НПО им.Лавочкина обезьяны обучение общество О.Г.И. онкология открытия палеолит палеонтология память папирусы паразиты педагогика планетология погода подготовка космонавтов популяризация науки право преподавание истории продолжительность жизни происхождение человека Протон-М психоанализ психология психофизиология птицы РадиоАстрон ракета растения РБК РВК РГГУ регионоведение религиоведение рептилии РКК «Энергия» робототехника Роскосмос Роспатент русский язык рыбы сердце сериалы Сингапур сланцевая революция смертность СМИ Солнце сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры торнадо транспорт ураган урбанистика фармакология Фестиваль публичных лекций физика физиология физическая антропология финансовый рынок фольклор химия христианство Центр им.Хруничева школа школьные олимпиады эволюция эволюция человека экология эмбриональное развитие эпидемии этика этнические конфликты этология Юпитер ядерная физика язык

Редакция

Электронная почта: politru.edit1@gmail.com
Адрес: 129090, г. Москва, Проспект Мира, дом 19, стр.1, пом.1, ком.5
Телефон: +7 495 980 1894.
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003г. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2014.