Полiт.ua Государственная сеть Государственные люди Войти
23 сентября 2018, воскресенье, 05:58
Facebook Twitter VK.com Telegram

НОВОСТИ

СТАТЬИ

АВТОРЫ

ЛЕКЦИИ

PRO SCIENCE

СКОЛКОВО

РЕГИОНЫ

20 декабря 2017, 11:44

У твердого металлического вещества нашли свойства жидкого кристалла

Катод из гексаборида церия
Катод из гексаборида церия
APTECH

Ученые из Института общей физики имени А.М. Прохорова РАН впервые наблюдали свойства жидкого кристалла у твердого металлического соединения, гексаборида церия, в структуре которого на каждый атом металла (в данном случае церия) приходится шесть атомов бора. С научной статьей можно ознакомиться в журнале Scientific Reports. Исследования поддержаны грантом Российского научного фонда (РНФ).

Гексаборид церия (CeB6), который уже более 40 лет удивляет ученых необычными свойствами, относится к сильно коррелированным металлам. Электроны в таких металлах ведут себя не как атомы в газе (что происходит в обычных проводниках), а как сильно взаимодействующие молекулы в жидкости. Теперь же у гексаборида церия открыли свойства классических жидких кристаллов, благодаря которым его сопротивлением можно управлять с помощью магнитных полей. Эти свойства ранее были предсказаны у класса веществ, к которым относится CeB6, но никогда не наблюдались у этого соединения.

«Одно из направлений в физике конденсированного состояния – исследование металлических материалов, которые ведут себя как аналоги классических жидких кристаллов. Термин «жидкий кристалл» у всех на слуху: часы жидкокристаллические, ЖК-телевизор, дисплей мобильного телефона – все это мир вокруг нас», – поясняет ведущий автор статьи Сергей Демишев, доктор физико-математических наук, заведующий отделом низких температур и криогенной техники в Институте общей физики имени А.М. Прохорова РАН, профессор МФТИ и НИУ ВШЭ.

Для наглядности классический жидкий кристалл можно представить как раствор молекул, имеющих форму палочек. Если все «палочки» в растворе ориентированы беспорядочно, то такая среда не имеет выделенного направления и называется изотропной. Это случай максимально высокой симметрии, поскольку система совмещается сама с собой при повороте на любой угол вокруг любой произвольно выбранной оси. Однако изменение внешних условий, например, температуры или электрического поля, может привести к тому, что все «палочки» выстроятся вдоль одной выделенной в пространстве оси. Такая фаза обладает более низкой симметрией по сравнению с изотропной фазой и называется нематиком.

Оказывается, среди твердых тел тоже встречаются аналогичные жидким кристаллам материалы – электронные нематики. Трудно представить, что точечные электроны в них могут играть ту же роль, что и молекулы-палочки жидкого кристалла. У электронов есть собственный магнитный момент, спин, который можно образно представить в виде магнитной стрелки. Как железные опилки, выстраивающиеся по силовым линиям магнитного поля в школьном опыте, спины электронов тоже могут ориентироваться магнитным полем. Но и магнитные стрелки не спасают положения, поскольку, в отличие от магнитной стрелки компаса, спины не имеют конечного размера. Разрешение этого противоречия оказалось неожиданным.

a – Кристаллическая структура CeB6; b – схема исследования электронного нематического эффекта у CeB6. Электрический ток J направлен вдоль оси z, направление магнитного поля B варьируется в плоскости xy. Оранжевые стрелки обозначают хаотически ориентированные локализованные спины на атомах церия. c – Карта угловой зависимости анизотропного магнитосопротивления в экспериментах. В квадратных скобках приведены обозначения кристаллографических направлений. По материалам публикации в Scientific Reports. Источник: Сергей Демишев.

В сильно коррелированных металлах, к которым относится CeB6, происходят так называемые спиновые флуктуации. На классическом языке это означает, что «магнитная стрелка», связанная с электроном, «дрожит» — случайно меняет величину и ориентацию в пространстве. Если «дрожание» магнитных стрелок одинаково по всем направлениям, то такая среда изотропна и является аналогом изотропной фазы классического жидкого кристалла. А когда магнитные стрелки «дрожат» вдоль одного направления, среда анизотропна и представляет собой электронный нематик. При этом в нем упорядочены не спины, а именно их «дрожание». Упорядочение с понижением симметрии (появление выделенного направления) характерно только для спиновых флуктуаций, что отличает электронную нематическую фазу от других магнитоупорядоченных фаз.

Спиновые флуктуации важны потому, что в сильно коррелированных металлах именно они определяют электрическое сопротивление материала. Если электрический ток, представляющий собой поток электронов, не встречает препятствий, то сопротивление материала будет равно нулю, как у сверхпроводника. В сильно коррелированном проводнике «препятствием» для потока электронов будут спиновые флуктуации, зависящие от внешнего магнитного поля. Поэтому, чтобы обнаружить эффект электронного нематика, нужно исследовать электрическое сопротивление образца в зависимости от направления магнитного поля в пространстве. Физики называют это анизотропией магнитосопротивления.

До работы авторов зависимость сопротивления образца гексаборида церия от угла между магнитным полем и одной из осей подробно не изучалась. Восполнив этот пробел экспериментами, они построили детальные карты анизотропии магнитосопротивления в зависимости от температуры, проанализировали их и открыли эффект электронного нематика у гексаборида церия. Физики выяснили, как возникает анизотропия магнитосопротивления у CeB6и как общая теоретическая идея электронной нематической фазы реализуется на практике.

Оказалось, что при температуре всего на 3,2 градуса выше абсолютного нуля «дрожание» квантовых магнитных стрелок создает анизотропию магнитосопротивления. В результате гексаборид церия ведет себя как жидкий кристалл, а роль молекул-палочек играют анизотропные спиновые флуктуации.

«Пока мы не можем применить открытый эффект на практике. Наблюдаемое явление существенно низкотемпературное, и это пока что pure science, – комментирует Сергей Демишев. – Как правило, флуктуации любой природы рассматриваются как вредные с точки зрения технических приложений. Однако результаты нашей работы показывают, что спиновыми флуктуациями можно эффективно управлять, влияя на электропроводность материала. Может быть, кто-то из молодых коллег придумает, как применить только что обнаруженный нами эффект, например, в области спиновой электроники».

Обсудите в соцсетях

Система Orphus
Loading...
Подпишитесь
чтобы вовремя узнавать о новых спектаклях и других мероприятиях ProScience театра!
3D Apple Big data Dragon Facebook Google GPS IBM MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi Адыгея акустика Александр Лавров альтернативная энергетика «Ангара» антибиотики античность археология архитектура астероиды астрофизика аутизм Африка бактерии бедность библиотеки биология биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера бозон Хиггса Византия викинги вирусы военная полиция Вольное историческое общество воспитание Вселенная вулканология гаджеты генетика география геология геофизика глобальное потепление гравитация грибы грипп дельфины демография демократия дети динозавры ДНК Древний Египет естественные и точные науки животные жизнь вне Земли Западная Африка защита диссертаций землетрясение змеи зоопарк зрение Иерусалим изобретения иммунология импорт инновации интернет инфекции информационные технологии искусственный интеллект ислам исламизм история история искусства история цивилизаций История человека. История институтов исчезающие языки карикатура картография католицизм квантовая физика квантовые технологии КГИ киты климатология комета кометы компаративистика компьютерная безопасность компьютерные технологии космический мусор космос криминалистика культура культурная антропология Курская область лазер Латинская Америка лексика лженаука лингвистика Луна льготы мамонты Марс математика материаловедение МГУ медицина междисциплинарные исследования Международный арбитражный суд в Гааге местное самоуправление Металлургия метеориты микробиология микроорганизмы Минобрнауки мифология млекопитающие мобильные приложения мозг моллюски Монголия музеи НАСА насекомые научный юмор неандертальцы нейробиология неолит Нобелевская премия НПО им.Лавочкина обезьяны обучение общество одаренные дети онкология открытия палеолит палеонтология память папирусы паразиты педагогика перевод персональные данные планетология погода подготовка космонавтов политика право преподавание истории приматы продолжительность жизни происхождение человека Протон-М психоанализ психология психофизиология птицы РадиоАстрон ракета растения РБК РВК РГГУ религиоведение рептилии РКК «Энергия» робототехника Роскосмос Роспатент Росприроднадзор Российская империя Русал русский язык рыбы Сергиев Посад сердце Сингапур сланцевая революция смертность СМИ Солнце сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология финансовый рынок фольклор химия христианство Центр им.Хруничева черные дыры школа эволюция экология эмбриональное развитие эпидемии эпидемиология этнические конфликты этология Юпитер ядерная физика язык

Редакция

Электронная почта: politru.edit1@gmail.com
Адрес: 129090, г. Москва, Проспект Мира, дом 19, стр.1, пом.1, ком.5
Телефон: +7 495 980 1894.
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003г. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2014.