Полiт.ua Государственная сеть Государственные люди Войти
20 июня 2018, среда, 01:28
Facebook Twitter VK.com Telegram

НОВОСТИ

СТАТЬИ

АВТОРЫ

ЛЕКЦИИ

PRO SCIENCE

СКОЛКОВО

РЕГИОНЫ

09 июня 2018, 15:40

Новый композитный материал позволит получать чистый водород из метана

Схема изготовления мембраны (кольцо-«оправа», два серых цилиндра – пористая подложка на основе пены из никеля-алюминия, далее – наносимые слои: протонпроводящие (фиолетовый и оранжевый) и каталитический (зелёный))
Схема изготовления мембраны (кольцо-«оправа», два серых цилиндра – пористая подложка на основе пены из никеля-алюминия, далее – наносимые слои: протонпроводящие (фиолетовый и оранжевый) и каталитический (зелёный))
Источник: Владислав Садыков

Российские ученые из Института катализа имени Г.К. Борескова Сибирского отделения РАН создали нанокомпозитные материалы для мембран, позволяющих получать чистый водород. Исследования поддержаны грантом Российского научного фонда (РНФ). Статья ученых опубликована в журнале International Journal of Hydrogen Energy, кратко о ней рассказывается в пресс-релизе РНФ.

Потребность в водородном топливе растет каждый год, и, по прогнозам, в XXI веке нас ожидает резкий рост спроса на водород. Это будет связано с увеличением глубины переработки нефти, с развитием производства аммиака, метанола, жидкого топлива, процессов получения качественного железа и с развитием водородного транспорта.

Перспективным методом получения водорода сегодня считается конверсия главной составляющей природного газа – метана. Конверсия – это процесс превращения одних газов в другие, происходящий при высокой температуре. Так, из смеси метана и воды получается смесь из углекислого газа и водорода. Также в качестве исходного топлива для производства водорода с помощью конверсии можно использовать этиловый спирт (этанол). Чтобы повысить эффективность такого способа получения водорода, необходимо применять катализаторы – специальные материалы, ускоряющие течение реакции.

Сегодня для эффективного выделения водорода из смеси продуктов реакции используют специальные мембраны (упругие перепонки). Наиболее перспективны мембраны из плотных материалов. Они позволяют выделять водород из смеси газов, образующихся после процесса превращения, но не пропускают молекулы исходных веществ (метана или этанола) и побочных продуктов, таких как угарный и углекислый газы. В химическом реакторе на контактирующую с топливной смесью поверхность мембран наносится пористый слой катализатора, в котором и протекают реакции паровой конверсии биотоплив (метана или этанола). Водород из смеси продуктов переносится через мембрану на другую сторону, после чего его можно выделить и использовать.

Реактор с каталитической мембраной. Фото: Владислав Садыков

Ученые из Института катализа имени Г.К. Борескова СО РАН разработали нанокомпозитный материал, состоящий из вольфрамата неодима и наночастиц сплава никеля с медью. Он хорошо проводит через себя водород и обладает высокой стабильностью в рабочих условиях. Ученые нанесли тонкие слои этого нанокомпозита на подложку из никель-алюминиевого пеносплава, а затем покрыли его пористым слоем катализатора. Это позволило создать каталитические мембраны для получения чистого водорода из биотоплива.

«В сравнении со стандартным материалом для мембран – палладием – или его сплавами, наши нанокомпозиты намного дешевле и их эффективность отвечает требованиям практики», – говорит доктор химических наук, заведующий лабораторией катализаторов глубокого окисления Института катализа имени Г.К. Борескова СО РАН Владислав Садыков.

В рамках проекта, поддержанного грантом РНФ, ученые определили важные физико-химические характеристики полученных материалов, включая водородную проницаемость мембран, рабочие параметры процессов паровой конверсии метана и этанола в мембранных реакторах, ресурс работы (время, в течение которого катализатор и мембрана могут функционировать без ухудшения своих свойств). Измерения показали, что полученные исследователями материалы позволяют эффективно проводить реакции конверсии топлив в мембранных реакторах с выделением чистого водорода и имеют характеристики и ресурс работы, соответствующие современным промышленным требованиям.

«Технология синтеза наших материалов и конструкция мембранного реактора отработаны на лабораторном уровне. Переход на пилотный уровень – задача ближайшего будущего. Для внедрения каталитических мембран на промышленном уровне требуется существенно больше вложений», – резюмирует Владислав Садыков.

Обсудите в соцсетях

Система Orphus
Loading...
Подпишитесь
чтобы вовремя узнавать о новых спектаклях и других мероприятиях ProScience театра!
3D Apple Big data Dragon Facebook Google GPS IBM MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi Адыгея акустика Александр Лавров альтернативная энергетика «Ангара» антибиотики античность археология архитектура астероиды астрофизика аутизм бактерии бедность библиотеки биология биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера бозон Хиггса Византия викинги вирусы военная полиция Вольное историческое общество воспитание Вселенная вулканология гаджеты генетика география геология геофизика глобальное потепление гравитация грибы грипп дельфины демография демократия дети динозавры ДНК Древний Египет естественные и точные науки животные жизнь вне Земли Западная Африка защита диссертаций землетрясение змеи зоопарк зрение Иерусалим изобретения иммунология инновации интернет инфекции информационные технологии искусственный интеллект ислам история история искусства история цивилизаций История человека. История институтов исчезающие языки карикатура картография католицизм квантовая физика квантовые технологии КГИ киты климатология комета кометы компаративистика компьютерная безопасность компьютерные технологии космический мусор космос криминалистика культура культурная антропология лазер Латинская Америка лексика лженаука лингвистика Луна мамонты Марс математика материаловедение МГУ медицина междисциплинарные исследования Международный арбитражный суд в Гааге местное самоуправление метеориты микробиология микроорганизмы Минобрнауки мифология млекопитающие мобильные приложения мозг моллюски Монголия музеи НАСА насекомые научный юмор неандертальцы нейробиология неолит Нобелевская премия НПО им.Лавочкина обезьяны обучение общество одаренные дети онкология открытия палеолит палеонтология память папирусы паразиты педагогика планетология погода подготовка космонавтов политика право преподавание истории продолжительность жизни происхождение человека Протон-М психоанализ психология психофизиология птицы РадиоАстрон ракета растения РБК РВК РГГУ религиоведение рептилии РКК «Энергия» робототехника Роскосмос Роспатент Россотрудничество русский язык рыбы Сергиев Посад сердце Сингапур сланцевая революция смертность СМИ Солнце сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры торнадо транспорт ураган урбанистика фармакология физика физиология финансовый рынок фольклор химия христианство Центр им.Хруничева черные дыры школа эволюция экология эмбриональное развитие эпидемии эпидемиология этнические конфликты этология Юпитер ядерная физика язык

Редакция

Электронная почта: politru.edit1@gmail.com
Адрес: 129090, г. Москва, Проспект Мира, дом 19, стр.1, пом.1, ком.5
Телефон: +7 495 980 1894.
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003г. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2014.