16 июля 2019, вторник, 05:59
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.Дзен

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

19 августа 2014, 15:48

Редактирование талассемии

Wikimedia Commons

Генная терапия сделала шаг в направлении лечения β-талассемии и заболеваний, вызванных конкретной мутацией в единственном гене. Соответствующая работа опубликована в журнале Genome Research группой ученых из Калифорнии. Ученые получили индуцированные плюрипотентные стволовые клетки из клеток пациента, отредактировали их геном и заставили дифференцироваться в клетки крови.

β-талассемия – генетическое заболевание крови, вызываемое мутациями в гене, кодирующем одну из частей гемоглобина. Когда мутации оказываются в обеих копиях гена, болезнь может протекать очень тяжело. Лечения как такового не существует, только переливания крови и пересадка костного мозга, если удастся найти донора. Медикаментозное лечение направлено на то, чтобы снизить токсичность свободного железа, которое у здоровых людей находится в связанном состоянии в молекуле гемоглобина.

Выживают больные с мутациями, из-за которых полностью прекращается синтез гемоглобина, благодаря эмбриональному гемоглобину – это другая, менее эффективная разновидность, которую кодирует другой ген. У здоровых людей ее уровень ее синтеза быстро падает после рождения, хотя и не до нуля.

Так как β-талассемия относится к моногенным заболевания – тем, которые вызываются мутацией в единственном гене, – она кажется перспективной мишенью для генной терапии. Включил нужный ген в нужном месте – и пациент здоров. Дело за малым – придумать, как включить.

Самый эффективный на сегодняшний день метод – это вирусная доставка нужного гена. Создается специальный вирус, неспособный никого заразить больше одного раза и вместо генов, которые кодировали бы его собственные вирусные белки, содержащий терапевтические гены. Этим вирусом заражаются клетки. Сейчас один человек после лечения такими вирусами живет с генотипом, соответствующим тяжелой форме β-талассемии, но без переливаний крови и нормально себя чувствует.

Вирусная доставка терапевтических генов, однако, вещь эффективная, но опасная. Во-первых, вирус может встраивать свою ДНК в произвольное место генома. Это может нарушить работу какого-нибудь нужного клетке гена и привести к нежелательным последствиям, вплоть до превращения клетки в раковую. Кроме того, человеческий организм приучен бороться с вирусами, и при введении большого количества вирусных частиц возникает иммунный ответ, иногда довольно тяжелый. Поэтому возникает вопрос, нельзя ли отредактировать геном как-нибудь побезопасней.

В генной инженерии вовсю применяются эндонуклеазы рестрикции – ферменты, которые у бактерий играют роль иммунной системы. У бактерий есть свои вирусы, они называются бактериофаги. Они точно также как обычные вирусы, чтобы размножиться, должны заразить бактерию и встроить свой геном в геном бактериальной клетки. Поскольку для бактерий это смертельно опасно, они защищаются. У них есть ферменты, которые узнают небольшие последовательности ДНК бактериофага (аналогичные последовательности у самих бактерий предусмотрительно химически модифицированы и недоступны для ферментов) и разрезают ее. Для некоторых таких ферментов последовательности («сайты узнавания») строго определены и, как правило, состоят не более чем из 10 пар оснований. Это очень удобно для ученых, которым в лаборатории надо редактировать, сшивать и склеивать небольшие участки ДНК – там удается подобрать ферменты, сайты узнавания которых встречаются в редактируемой ДНК 1-2 раза. Весь геном, однако, гораздо больше: геном человека – это 3 миллиарда пар оснований, а в лабораториях чаще всего имеют дело с плазмидами и вирусами – это, максимум, несколько десятков тысяч пар оснований. Теория вероятности подсказывает, что конкретное произвольное «слово» из восьми букв встретится в геноме около 50 тысяч раз. Если редактировать геном таким инструментом, от него ничего хорошего не выйдет, а только разлетятся клочки по закоулочкам, и клетка быстро погибнет, не в силах починить все разрывы.

На радость ученым у бактерий нашелся еще один метод защиты от бактериофагов – это CRISPR/CAS9. Это тоже своеобразная «иммунная система» бактерии. Она функционирует благодаря коротким последовательностьям в ДНК бактерии, соответствующим фрагментам из ДНК бактериофагов. Собственно, CRISPR означает «Clustered Regularly Interspaced Short Palindromic Repeats» – короткие палиндромные повторы, регулярно расположенные группами. С этих фрагментов ДНК бактериофага бактерия синтезирует цепочки РНК. РНК взаимодействует по принципу комплементарности с ДНК бактериофагов, проникающих в бактериальную клетку, а пока они взаимодействуют, специальные белки вносят разрыв в ДНК в месте взаимодействия. В данном конкретном случае эту функцию выполняет белок CAS9. Похожий метод инактивации генов есть и у более сложно устроенных организмов, вплоть до человека. Он называется РНК-интерференцией (Почитать о роли РНК-инференции можно тут и тут).

Это явление научились использовать в своих интересах ученые. Можно синтезировать РНК, комплементарные тому месту, куда хочется внести разрез, и похожие на РНК из системы CRISPR/CAS9 и ввести их в клетки вместе с белком CAS9. На самом деле, конечно, в клетки вводятся конструкции из ДНК, кодирующие и то, и другое. РНК будет указывать на то место, где надо резать, а белок – резать. Комплементарная часть таких РНК как правило составляет около 20 оснований, вероятность встретить в геноме конкретное «слово» длиной 20 букв составляет примерно 0,003, поэтому легко подобрать РНК, комплементарную единственной нужной последовательности генома.

Внесение разрыва в двухцепочечную геномную ДНК сильно повышает вероятность гомологической рекомбинации – процесса, при котором гомологичные хромосомы могут обмениваться гомологичными фрагментами. Если ввести в клетку донорную ДНК, несущую нормальный ген гемоглобина, а затем с помощью системы CRISPR/CAS9 ввести разрыв в нужное место, то с определенной довольной высокой вероятностью образуется хромосома с нормальным геном.

Все это авторы статьи проделали с iPS клетками – плюрипотентными клетками, полученными из соматических клеток самого пациента (об iPS клетках можно прочитать здесь и здесь). Поскольку материалом служат клетки самого пациента, можно не беспокоиться об иммунном ответе после трансплантации клеток обратно. Затем клетки дифференцировали в эритробласты – еще пока содержащие ядро предшественники эритроцитов и оценивали в них уровень синтеза гемоглобина. Оказалось, что он возрастал. Однако еще быстрее возрастал уровень синтеза эмбриональной разновидности гемглобина, за счет которой как раз и выживают больные β-талассемией.

Авторы говорят, что после доработки метода дифференцировки во взрослые эритробласты, их метод будет применим для лечения людей. В любом случае, предложен еще один, довольно эффективный метод редактирования генома, который может пригодиться для лечения самых разных болезней.

Обсудите в соцсетях

Система Orphus
«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ Марс Металлургия Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Юпитер акустика антибиотики античность археология архитектура астероиды астрофизика бактерии бедность библиотеки биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты климатология комета кометы компаративистика космос культура лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы психиатрия психоанализ психология психофизиология птицы ракета растения религиоведение рептилии робототехника рыбы сердце смертность сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство школа экология эпидемии эпидемиология этология язык Александр Беглов Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад альтернативная энергетика аутизм биология бозон Хиггса глобальное потепление грипп информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция финансовый рынок черные дыры эволюция эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: [email protected]
Телефон: +7 929 588 33 89
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2019.