24 марта 2019, воскресенье, 10:11
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.Дзен

НОВОСТИ

СТАТЬИ

PRO SCIENCE

СКОЛКОВО

ЛЕКЦИИ

АВТОРЫ

03 августа 2017, 12:22

Атмосфера не помеха: адаптивная оптика Очень Большого телескопа

Планетарная туманность IC 4406
Планетарная туманность IC 4406
ESO/J. Richard (CRAL)

Основной телескоп 4 в составе Очень Большого телескопа Европейской Южной обсерватории (ESO) теперь стал полностью адаптивным. Проектирование, изготовление и тестирование новой системы адаптивной оптики AOF (Adaptive Optics Facility) продолжались более десяти лет, и вот состоялись первые наблюдения с ее использованием. При помощи спектроскопического обозревателя MUSE были получены изображения планетарных туманностей и галактик с великолепным разрешением. Сочетание AOF и MUSE образует одну из наиболее совершенных и мощных систем астрономической техники в истории наземной астрономии. Об этом событии рассказывает пресс-релиз ESO.

Очень Большой телескоп построен на горе Серро Параналь в Чили. Он начала работу в 1998 году. Состоит он из четырех основных оптических телескопов с диаметром зеркала 8,2 метра и четырех вспомогательных (1,8 м), объединенных в единую оптическую систему. Основные телескопы получили собственные имена на языке индейцев мапуче: Анту «Солнце», Куйен «Луна», Мелипал «Южный крест» и Йепун «Венера». Телескопы снабжены дополнительными наблюдательными инструментами, например, спектрограф интегрального поля MUSE, который обеспечивает получение данных от исследуемого объекта в 3D-форме: в каждом пикселе изображения содержится весь спектр объекта. Практически это означает, что инструмент одновременно создает тысячи изображений, каждое на своей длине волны, собирая таким образом огромное количество информации.

Система адаптивной оптики AOF – долгосрочный проект, целью которого является обеспечение Очень Большого Телескопа адаптивно-оптическим устройством для приемников, установленных на четвертом основном телескопе, в частности, для спектрографа MUSE Адаптивная оптика позволяет компенсировать размывание изображений в атмосфере Земли, в результате чего приемник MUSE получает гораздо более четкие изображения. Их контраст повышается вдвое, и MUSE может теперь исследовать еще более слабые космические объекты. «Теперь, благодаря AOF, астрономы могут получать изображения высочайшего качества даже если состояние атмосферы не идеально», – говорит Гаральд Кунтшнер (Harald Kuntschner), научный руководитель проекта от ESO.

В результате серии испытаний новой системы группа астрономов и инженеров получила ряд великолепных изображений. Наблюдались планетарные туманности IC 4406 в созвездии Волка и NGC 6369 в Змееносце. Изображения, полученные с приемником MUSE и системой AOF, продемонстрировали резкое увеличение разрешающей силы и выявили в IC 4406 ранее неизвестные оболочечные структуры.

Снимок туманности NGC 6369 без и с использованием системы адаптивной оптики AOF. ESO/P. Weilbacher (AIP)

Система AOF, которая позволила добиться такого успеха, имеет несколько важных составных элементов: четырехлазерное устройство формирования искусственых звезд 4LGSF (Four Laser Guide Star Facility) и очень тонкое деформируемое вторичное зеркало UT4. При диаметре немного более метра, это крупнейшее из всех существующих адаптивное заркало, потребовавшее для своего создания применения самых передовых технологий. Оно было смонтировано на UT4 в 2016 году (ann16078) и заменило собой первоначально установленное на нем обычное вторичное зеркало.

В 4LGSF используются четыре 22-ваттных лазерных пучка, вызывающие свечение атомов натрия в верхней атмосфере. В небе появляются четыре светящихся точки, имитирующие звезды. Датчики адаптивно-оптического модуля GALACSI (Ground Atmospheric Layer Adaptive Corrector for Spectroscopic Imaging) регистрируя световые сигналы от этих «искусственных звезд», определяют параметры их атмосферных искажений.

Компьютерные системы AOF тысячу раз в секунду вычисляют коррекции, которые необходимо внести в форму гибкого вторичного зеркала телескопа для того, чтобы компенсировать атмосферные искажения. В частности, GALACSI корректирует влияние атмосферной турбулентности в слоях атмосферы высотой до одного километра над телескопом. В зависимости от атмосферных условий турбулентность может меняться с высотой, но исследования показали, что большая часть атмосферных возмущений происходит именно в приземном слое воздуха.

Другие части системы, оптимизирующие работу AOF, также разработаны и уже действуют на телескопе. Расширение программного обеспечения мониторинга атмосферы (Astronomical Site Monitor), позволяет определять высоту, на которой имеется турбулентность. Система управления лазерами LTCS (Laser Traffic Control System) предотвращает помехи от лазерных пучков и искусственных звезд, которые могут мешать наблюдениям на других телескопах.

«Использование системы AOF практически экивалентно подъему телескопа VLT еще примерно на 900 метров, что выносит его за пределы наиболее турбулентного слоя в атмосфере, – говорит Робин Арсено (Robin Arsenault), менеджер проекта AOF. – В прошлом, если мы хотели получить более четкие изображения, нам пришлось бы искать лучшее место или использовать космический телескоп. Но теперь, когда у нас есть AOF, мы можем создавать значительно лучшие изображения именно там, где мы находимся – и гораздо дешевле!».

Коррекции, которые с огромной скоростью непрерывно вносит в изображения AOF, улучшают его качество таким образом, что свет концентрируется в меньших по размеру участках приемника: в результате этого MUSE может разрешать более мелкие детали и регистрировать более слабые звезды, чем это было возможно ранее. Сейчас блок GALACSI обеспечивает коррекцию на большом поле зрения. Но это лишь первый шаг в применении адаптивно-оптических методов для MUSE. Сейчас продолжается работа над введением второго режима GALACSI, режима малого поля, первые наблюдения в котором должны состояться в начале 2018 года. Он позволит корректировать турбулентность на любой высоте и получать изображения в малых полях с еще более высоким разрешением.

«Еще шестнадцать лет назад, когда мы предложили построить революционно новый инструмент MUSE, мы уже предполагали сочетать его с другой передовой системой: с AOF, – говорит Ролан Бэкон (Roland Bacon), руководитель проекта MUSE. – Научный потенциал MUSE, и без того огромный, теперь еще повысился. Наша мечта осуществляется».

Одной из главных научных задач новой системы является наблюдение слабых объектов дальней Вселенной при наиболее высоком возможном качестве изображения, что требует длительных многочасовых экспозиций. Жоэль Верне (Joël Vernet), научный руководитель проекта MUSE и GALACSI от ESO, комментирует: «В частности, нас интересуют наблюдения самых слабых и небольших галактик на самых больших расстояниях. Это галактики в процессе их формирования, и их наблюдения дадут нам ключ к пониманию процесса образования галактик».

MUSE – не единственный приемник, качество работы которого улучшится с введением в строй AOF. В скором будущем начнет работать еще одна адаптивно-оптическая система под названием GRAAL, которая повысит разрешение инфракрасного инструмента HAWK-I, на смену которому впоследствии придет мощный новый приемник ERIS.

«ESO непрерывно совершенствует системы адаптивной оптики. AOF прокладывает путь адаптивным системам Чрезвычайно БольшогоТелескопа ESO ELT, – говорит Арсено. “Работа с системой AOF уже дала нам – ученым, инженерам и промышленности – бесценный опыт и сведения, которые мы сможем теперь использовать в создании сверхтелескопа ELT».

Обсудите в соцсетях

Система Orphus
«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ Марс Металлургия Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Юпитер акустика антибиотики античность археология архитектура астероиды астрофизика бактерии бедность библиотеки биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты киты климатология комета кометы компаративистика космос культура лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука неандертальцы нейробиология неолит обезьяны общество онкология открытия палеолит палеонтология память папирусы паразиты перевод планетология погода политика право приматы психиатрия психоанализ психология психофизиология птицы ракета растения религиоведение рептилии робототехника рыбы сердце смертность сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство школа экология эпидемии эпидемиология этология язык Древний Египет Западная Африка Латинская Америка Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад альтернативная энергетика аутизм биология бозон Хиггса глобальное потепление грипп информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция финансовый рынок черные дыры эволюция эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: [email protected]
Адрес: 129090, г. Москва, Проспект Мира, дом 19, стр.1, пом.1, ком.5
Телефон: +7 929 588 33 89
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2019.