16 октября 2019, среда, 00:40
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.Дзен

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

13 ноября 2017, 16:00

Мультиоператорные вычисления

Мгновенные картины возмущений давления при развитии неустойчивости так называемого вихря Ренкина в сжимаемом газе. Это первое полное описание процесса развитии неустойчивости и излучения звука вихрем Ренкина
Мгновенные картины возмущений давления при развитии неустойчивости так называемого вихря Ренкина в сжимаемом газе. Это первое полное описание процесса развитии неустойчивости и излучения звука вихрем Ренкина
Андрей Толстых

Сотрудник Вычислительного центра имени А. А. Дородницына Федерального исследовательского центра «Информатика и управление» РАН разработал новую высокоточную вычислительную технологию, которую можно применять для решения задач аэрогидродинамики и других приложений, например, задачи снижения уровня шума от двигателей. Исследование поддержано грантом Российского научного фонда (РНФ), а результаты опубликованы в Mathematics and Computers in Simulation. Кратко о результатах сообщает пресс-релиз РНФ.

Аэрогидродинамика – это наука о движении жидкостей и газов, которая занимается изучением проблем обтекания тел жидким или газообразным потоком и движения газов в пространстве, ограниченном стенками. Для моделирования процессов аэрогидродинамики на компьютерах и суперкомпьютерах автор статьи разработал мультиоператорный метод.

При численном моделировании физических процессов на электронно-вычислительных машинах уравнения, которые описывают эти процессы, заменяются на алгебраические уравнения. Процесс их решения сводится к выполнению арифметических действий. Результаты вычислений – значения параметров изучаемых процессов в заданных точках исследуемой области. Записать алгебраические уравнения можно с помощью операторов. Оператор – это символические изображения математических операций, которые определяются формулами. Эти формулы указывают, какие арифметические действия нужно выполнить. Точность этих формул в конечном счете определяет точность получаемых решений. Математически точность характеризуется «порядками», которые показывают, как быстро убывают погрешности этих решений при увеличении числа заданных точек в области. При этом, чем больше значения порядков, тем выше точность при фиксированном числе точек. Повышение точности численного моделирования является одним из приоритетных направлений современного развития вычислительной аэрогидродинамики.

Скрич-эффект. Мгновенная картина течения (так называемая шлирен-фотография) с очень четким изображением акустических волн (полуокружности). Фото: Андрей Толстых

Традиционные методы повышения порядков основаны на усложнении формул, определяющих операторы. Для реальных задач это может создавать определенные трудности и ограничения. В мультиоператорном методе повышение порядков достигается за счет использования комбинаций многих операторов, которые определяются одной и той же формулой очень простой структуры, но имеют разные значения некоторого параметра. Эти комбинации были названы мультиоператорами. При этом, чем больше операторов, тем выше легко получаемые порядки. Построенные в последнее время мультиоператоры обеспечивают очень высокую точность численного моделирования. Более того, в результате оптимального выбора значений параметра применение мультиоператоров при численном моделировании физических процессов позволяет лучше «видеть» мелкие детали этих процессов в течение длительного времени их развития.

«Сущность работы состояла в развитии абсолютно новой вычислительной технологии – мультиоператорного метода. Применение мультиоператоров позволяет осуществлять численное моделирование различных физических процессов с точностью, намного превышающей точность существующих численных методов. Эта методика, не имеющая аналогов в нашей стране и за рубежом, была использована для решения задач аэрогидродинамики, для которых применение традиционных методов может оказаться недостаточно эффективным», – рассказал ведущий автор статьи Андрей Толстых, доктор физико-математических наук, заведующий отделом прикладной математической физики Вычислительного центра имени А. А. Дородницына Федерального исследовательского центра «Информатика и управление» РАН.

Автор отмечает, что разработанная методика имеет достаточно общий характер и может использоваться для решения различных классов задач, требующих точность вычислений, которая превосходит точность стандартных методов.

С помощью мультиоператорного метода ученые могут решать задачи аэроакустики, например, задачи снижения уровней шума от двигателей и обтекаемых элементов летательных аппаратов, задачи турбулентности, задачи численного моделирования гиперзвуковых течений. Еще мультиоператорные схемы высокой разрешающей способности могут использоваться при численном моделировании торнадо, а также других атмосферных явлений.

Мгновенные картины возмущений давления при развитии неустойчивости так называемого вихря Ренкина в сжимаемом газе. Это первое полное описание процесса развитии неустойчивости и излучения звука вихрем Ренкина. Задача имеет отношение к проблемам аэроакустики, направленным на снижение уровней шума. Источник: Андрей Толстых

«Потребности в данной методике могут возникнуть в других областях, например, при численном моделировании климатических явлений, при численном исследовании процессов горения. В широком смысле наша цель состоит в создании инструмента, который может быть полезным для различных исследователей при решении их конкретных задач. В настоящее время работа продолжается, и мы рассчитываем на ее расширение», – заключил ученый.

Обсудите в соцсетях

Система Orphus
«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность археология архитектура астероиды астрофизика бактерии бедность библиотеки биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты климатология клонирование комета кометы компаративистика космос культура лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы психиатрия психоанализ психология психофизиология птицы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад альтернативная энергетика аутизм биология бозон Хиггса глобальное потепление грипп информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция физическая антропология финансовый рынок черные дыры эволюция эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: [email protected]
Телефон: +7 929 588 33 89
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2019.