3 декабря 2020, четверг, 17:36
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

11 декабря 2017, 10:00

Возможности плазменных ускорителей

Поток плазмы из ускорителя
Поток плазмы из ускорителя
А.Н. Козлов

Российские ученые доказали, что на существующих плазменных ускорителях можно добиться такой скорости потоков плазмы, которая необходима для начала реакции термоядерного синтеза в магнитных ловушках. Это исследование может иметь большое значение для разработок в области управляемого термоядерного синтеза, а также для создания новых типов плазменных двигателей для авиации и космонавтики. Результаты работы опубликованы в журнале Plasma Physics and Controlled Fusion. Исследование поддержано грантом Российского научного фонда (РНФ).

Управляемый термоядерный синтез может стать эффективным источником энергии, который придет на смену углеводородной энергетике. Сегодня существуют магнитные ловушки различных конструкций, в которых плазма (газ из заряженных частиц) удерживается с помощью сильного магнитного поля, например, токамаки, стеллараторы и галатеи (ловушки с левитирующими проводниками). Для начала реакции термоядерного синтеза в этих установках необходимо нагреть плазму до высокой температуры. С другой стороны, можно вложить энергию в плазму, разогнав ее до необходимой скорости (порядка 1500 км/с!) еще до попадания в магнитную ловушку. Причем речь идет об ускорении не отдельных частиц, а всего потока плотной плазмы. Сделать это довольно трудно.

По словам одного из авторов проводимых исследований, заведующего сектором в ФИЦ Институт прикладной математики им. М.В. Келдыша РАН, доктора физико-математических наук Андрея Козлова, с проблемами недостаточного ускорения плазмы сталкиваются ученые и за рубежом. Например, американские физики на плазменных пушках добились скорости отдельных плазменных сгустков в пределах 200 км/с, в то время как на отечественных установках были получены скорости потока плазмы на уровне 400 км/с.

Примеры экспериментальной реализации квазистационарного плазменного ускорителя (КСПУ). Иллюстрация предоставлена А.Н. Козловым.

Скорость потока плазмы, которой удается достичь на современных плазменных ускорителях, недостаточна, и увеличить ее непросто, поскольку при этом возрастают затраты на эксперименты и нагрузки на элементы установок. В работе доказано, что добиться необходимой скорости потока плазмы, отвечающей энергии в 30 КэВ, можно и на современном оборудовании. Для этого необходимо уменьшить концентрацию газа, который подается «на входе» в первую ступень ускорителя, где происходит ионизация газа и предварительное ускорение образовавшейся плазмы.

«Для того чтобы на данной установке добиться большего ускорительного эффекта, нужно увеличивать разрядные токи до 2,5, а то и 6 мегаампер, но при таких токах конструкция просто сгорит. Поэтому токи должны быть разумными, такими, какие есть, а надо всего лишь уменьшить концентрацию», — рассказал Андрей Козлов.

В своих расчетах ученые использовали мощности суперкомпьютера К-100, созданного в Институте прикладной математики им. М.В. Келдыша РАН совместно с ФГУП НИИ «Квант». Ученые меняли условия численного эксперимента и такие параметры, как концентрация и температура на входе, размеры установки и разрядный ток, и наблюдали, как меняются характеристики плазмы на выходе из плазменного ускорителя.

Помимо нового направления в решении проблемы управляемого термоядерного синтеза эффективные плазменные ускорители могут использоваться и самостоятельно — в качестве мощных электрореактивных плазменных двигателей. При наличии атомного реактора на борту модифицированные ускорители в перспективе можно будет устанавливать и на космических кораблях, и на будущих самолетах, что значительно сократит время дальних перелетов и позволит отказаться от традиционного топлива из углеводородного сырья.

Обсудите в соцсетях

«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ МФТИ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность антропогенез археология архитектура астероиды астрофизика бактерии бедность библиотеки биоинформатика биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера вакцинация викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты клад климатология клонирование комары комета кометы компаративистика космос кошки культура культурология лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеоклиматология палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы природа психиатрия психоанализ психология психофизиология птицы путешествие пчелы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экзопланеты экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Алексей Ананьев Дмитрий Козак Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад Солнечная система альтернативная энергетика аутизм биология бозон Хиггса вымирающие виды глобальное потепление грипп защита растений инвазивные виды информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология культурные растения междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция физическая антропология финансовый рынок черные дыры эволюция эволюция звезд эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество Европейская южная обсерватория жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PayPal PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика Top.Mail.Ru
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2020.