17 января 2021, воскресенье, 10:19
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

24 ноября 2020, 18:00

До конца времен

Издательство «Альпина нон-фикшн» представляет книгу Брайана Грина «До конца времен. Сознание, материя и поиски смысла в меняющейся Вселенной» (перевод Натальи Лисовой).

Брайан Грин — крупный физик-теоретик и знаменитый популяризатор науки. Его книги помогли многим познакомиться с теорией струн и другими важнейшими идеями современной физики. «До конца времен» — попытка поиска места для человека в картине мира, которую описывает современная наука. Грин показывает, как в противоборстве двух великих сил — энтропии и эволюции — развертывается космос с его галактиками, звездами, планетами и, наконец, жизнью. Почему есть что-то, а не ничего? Как мириады движущихся частиц обретают способность чувствовать и мыслить? Как нам постичь смысл жизни в леденящей перспективе триллионов лет будущего, где любая мысль в итоге обречена на угасание?

Предлагаем прочитать фрагмент книги, посвященный бозону Хиггса.

 

Распад пустоты

На пресс-конференции 4 июля 2012 г., проводившейся в ЦЕРНе (Европейском центре ядерных исследований), его представитель Джо Инкандела объявил об открытии частицы Хиггса, которую физики давно искали. Я смотрел прямую трансляцию этой пресс-конференции в Центре физики в Аспене, в комнате, куда набилось множество коллег. Было около двух часов ночи. После заявления комната взорвалась одобрительными криками. Камера сфокусировалась на Питере Хиггсе, который снял очки и протирал глаза. Хиггс предположил существование частицы, получившей его имя, почти за полвека до этого; он успешно преодолел сопротивление, которое нередко встречают незнакомые идеи, и целую жизнь ждал возможности убедиться, что был прав.

Во время долгой пешей прогулки по окраинам Эдинбурга молодой Питер Хиггс решил загадку, ставившую в тупик исследователей всего мира. В то время математические описания сильного, слабого и электромагнитного взаимодействий, а также частиц вещества, на которые влияют эти взаимодействия, стремительно сближались. Работая плечом к плечу, теоретики и экспериментаторы писали квантово-механическое руководство, разбирающее механизмы функционирования микромира. Но было одно явное упущение. Уравнения не могли объяснить, как фундаментальные частицы обрели массу. Почему так получается, что если толкать элементарные частицы (такие, как электроны или кварки), то почувствуешь их сопротивление приложенным усилиям? Это сопротивление отражает массу частицы, но уравнения, казалось, рассказывали иную историю: исходя из математики, частицы должны быть безмассовыми и, следовательно, не должны оказывать никакого сопротивления. Надо ли говорить, что несоответствие между реальностью и математикой сводило физиков с ума.

Причина, по которой математика, кажется, разрешала только безмассовые частицы, довольно сложна, но сводится в конечном итоге к симметрии. Как бильярдный шар со всех сторон выглядит одинаково, так уравнения, описывающие элементарные частицы, выглядят одинаково при замене одного математического слагаемого на другое. В каждом случае нечувствительность к изменению — ориентации для бильярдного шара или математической перестановки для уравнений — отражает высокую степень базовой симметрии.

Симметрия бильярдного шара гарантирует, что он будет катиться равномерно. Симметрия уравнений гарантирует гладкость их математического анализа. Как поняли специалисты по физике элементарных частиц, без симметрии уравнения стали бы противоречивыми и выдали бессмысленный результат, такой как единица, деленная на ноль. Отсюда загадка: анализ показал, что та же математическая симметрия, которая гарантирует правильные уравнения, требует также, чтобы частицы были безмассовыми (это, возможно, не удивительно, поскольку ноль сам по себе есть очень симметричное число, сохраняющее свое значение при умножении или делении на любое другое число).

Именно здесь в дело вступил Хиггс. Он заявил, что, объективно говоря, частицы действительно не имеют массы, в точности как того требуют безупречно симметричные уравнения. Однако, продолжал Хиггс, попав в этот мир, частицы обретают массу в результате влияния среды. Хиггс вообразил, что пространство заполнено невидимой субстанцией, известной теперь как поле Хиггса, и что частицы, которые двигаются через это поле, испытывают на себе действие силы сопротивления, напоминающей ту, что испытывает летящий в воздухе легкий мячик. Хотя такой мячик почти ничего не весит, если держать его за окном автомобиля, едущего на всё более высокой скорости, то от вашей руки это потребует серьезных усилий: мячик покажется вам массивным, потому что ему приходится преодолевать сопротивление воздуха. Аналогично, предположил Хиггс, когда толкаешь частицу, она ощущается массивной, потому что преодолевает сопротивление хиггсовского поля. Чем тяжелее частица, тем сильнее она сопротивляется вашему усилию, и это, согласно Хиггсу, означает, что частица испытывает более сильное сопротивление со стороны этого пронизывающего пространство поля.

Если вы пока незнакомы с понятием поля Хиггса, но внимательно прочли все предыдущие главы, эта идея, возможно, не покажется вам особенно экзотичной. Современная физика уже привыкла к идее о невидимых субстанциях, заполняющих пространство, — нынешней версии древнего эфира. От инфляционного поля, которое, возможно, было движителем Большого взрыва, до темной энергии, отвечающей, возможно, за измеренное ускоренное расширение Вселенной, физики последних нескольких десятилетий не стесняются предполагать, что пространство заполнено чем-то невидимым. Но в 1960-е гг. такая идея казалась весьма радикальной. Хиггс предполагал, что если бы пространство на самом деле было пустым в традиционном и интуитивном смысле, частицы вовсе не имели бы массы. Поэтому он заключил, что пространство, должно быть, не пусто, а необычная субстанция, которую оно вмещает, должна обладать как раз подходящими свойствами для насыщения частиц их очевидной массой.

Первая статья, в которой Хиггс изложил свою новую гипотезу, была сразу же отвергнута. «Мне сказали, что всё это чепуха», — вспоминает Хиггс реакцию. Но те, кто давал себе труд тщательно разобраться в этой идее, понимали ее достоинства, и идея постепенно получала распространение. В конечном итоге она была полностью принята. Я впервые встретился с гипотезой Хиггса в 1980-е гг., на выпускном курсе, и преподносилась она с такой уверенностью, что некоторое время я даже не понимал, что гипотеза еще не подтверждена экспериментально.

Стратегию проверки этой гипотезы настолько же легко описать, насколько трудно реализовать. Когда две частицы, скажем, два протона, сталкиваются на высокой скорости, такое столкновение должно по идее потрясти окружающее хиггсовское поле. Теоретически при случае это может отбить крохотную капельку поля, которая проявит себя как элементарная частица нового типа — частица Хиггса; нобелевский лауреат Фрэнк Вильчек называет это «осколком вакуума». Таким образом, обнаружение этой частицы означало бы несомненное доказательство гипотезы. Эта цель на протяжении более чем 30 лет вдохновляла исследования, в которых участвовали более 3000 ученых из более чем трех дюжин стран. В этих исследованиях использовался самый мощный в мире ускоритель частиц стоимостью более $15 млрд. О завершении этой одиссеи, о котором объявили на той пресс-конференции в американский День независимости, просигналил крохотный бугорок на гладком в остальном графике, построенном по данным Большого адронного коллайдера: именно он стал экспериментальным подтверждением того, что частица Хиггса найдена.

Это чудесный эпизод в анналах человеческих открытий; он углубляет наши представления о свойствах частиц и подкрепляет уверенность в способности математики обнажать скрытые аспекты реальности. Но для нашего путешествия по космической шкале времени хиггсовское поле важно по особой причине — в какой-то момент в будущем его значение может измениться. И примерно как лобовое сопротивление, которое испытывает легкий мячик, изменилось бы, если бы изменилась плотность воздуха на его пути, так и массы фундаментальных частиц изменились бы, если бы изменилось значение хиггсовского поля, с которым они встречаются. Любые подобные изменения, кроме самых крохотных, почти наверняка разрушили бы реальность, какой мы ее знаем. Атомы, молекулы и структуры, которые они образуют, сильнейшим образом зависят от свойств составляющих их частиц. Солнце сияет благодаря физическим и химическим свойствам водорода и гелия, которые зависят от свойств протонов, нейтронов, электронов, нейтрино и фотонов. Клетки делают то, что делают, в основном благодаря физическим и химическим свойствам их молекулярных составляющих, которые, опять же, зависят от свойств фундаментальных частиц. Если изменить массы фундаментальных частиц, их поведение тоже изменится; по существу, изменится в той или иной степени всё.

Множество лабораторных экспериментов и астрономических наблюдений установили, что для большей части, если не для всех прошедших 13,8 млрд лет массы фундаментальных частиц оставались постоянными, так что и значение хиггсовского поля оставалось стабильным. И всё же, даже если существует лишь крохотная вероятность того, что в будущем хиггсовское поле может скачком принять другое значение, эта вероятность будет усилена громадными промежутками времени, которые мы теперь рассматриваем, и превратится в почти полную уверенность.

Физика, имеющая непосредственное отношение к хиггсовскому скачку, называется квантовым туннелированием; чтобы понять суть этого процесса, лучше для начала рассмотреть его в более простых условиях. Поместим маленький шарик в пустой бокал для шампанского, и, если никто не будет этот бокал трогать, логично будет ожидать, что шарик в нем и останется. В конце концов, он огражден со всех сторон и не обладает достаточной энергией, чтобы взобраться по стеклянным стенкам и сбежать. Не обладает он также достаточной энергией, чтобы пробиться прямо через стекло. Аналогично, если поместить электрон в ловушку, напоминающую по форме бокал для шампанского, оградив его барьерами со всех сторон, также можно будет ожидать, что он останется на месте. В самом деле бо́льшую часть времени так и происходит. Но иногда электрон ведет себя иначе. Иногда он исчезает из ловушки и заново материализуется уже снаружи.

Каким бы удивительным подобный трюк, достойный Гудини, ни был для нас, в квантовой механике это дело обычное. Воспользовавшись уравнением Шрёдингера, можно вычислить вероятность того, что электрон будет обнаружен в той или другой локации, к примеру внутри или снаружи ловушки. Математика показывает, что чем серьезней ловушка — чем выше и толще ее стенки, — тем меньше вероятность того, что электрон улизнет. Но, и это ключевой момент, для того чтобы вероятность была нулевой, ловушка должна быть бесконечно толстой или бесконечно высокой; в реальном мире такого просто не бывает. А ненулевая вероятность, какой бы крохотной она ни была, означает, что, если подождать достаточно долго, рано или поздно электрон всё же окажется на другой стороне. Наблюдения это подтверждают. Именно такой переход через барьер мы и подразумеваем, когда говорим о «квантовом туннелировании».

Я описал квантовое туннелирование в терминах проникновения частицы сквозь барьер, изменения ее положения со «здесь» на «там», но это может быть и проникновение поля сквозь барьер, и изменение его значения с «этого» на «то». Такой процесс с участием хиггсовского поля может определить долгосрочную судьбу Вселенной.

В традиционных физических единицах нынешнее значение поля Хиггса равно 246. Почему 246? Никто не знает. Но силы лобового сопротивления, которые обеспечивает хиггсовское поле с таким значением (вместе с конкретным способом взаимодействия каждой частицы с ним), успешно объясняют массы фундаментальных частиц. Но почему величина поля Хиггса остается стабильной миллиарды лет? Ответ: мы считаем, что значение поля Хиггса, подобно шарику в бокале или электрону в ловушке, ограждено со всех сторон внушительными барьерами: если бы величина поля Хиггса попыталась измениться с 246 на другое значение, большее или меньшее, этот барьер загнал бы ее обратно к первоначальному значению, примерно как шарик вынужден был бы вернуться на дно бокала, если бы кто-то качнул бокал. И если бы не квантовые соображения, значение хиггсовского поля всегда оставалось бы равным 246. Но, как обнаружил в середине 1970-х гг. Сидни Коулмен, квантовое туннелирование меняет ситуацию.

Обсудите в соцсетях

«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ МФТИ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность антропогенез археология архитектура астероиды астрофизика бактерии бедность библиотеки биоинформатика биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера вакцинация викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты клад климатология клонирование комары комета кометы компаративистика космос кошки культура культурология лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеоклиматология палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы природа психиатрия психоанализ психология психофизиология птицы путешествие пчелы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники средневековье старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экзопланеты экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Алексей Ананьев Дмитрий Козак Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад Солнечная система альтернативная энергетика аутизм биология бозон Хиггса вымирающие виды глобальное потепление грипп защита растений инвазивные виды информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология культурные растения междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция физическая антропология финансовый рынок черные дыры эволюция эволюция звезд эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество Европейская южная обсерватория жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PayPal PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика Top.Mail.Ru
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2021.