НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

09 сентября 2022, 18:05

Холодильник Эйнштейна

Полит.ру знакомит читателей с книгами, вошедшими в длинный список претендентов на премию «Просветитель.Перевод» 2022 года — в этом году в него вошли 16 книг по биологии, истории, физике и другим наукам. За выход в финал будут состязаться научно-популярные переводы с английского, немецкого и норвежского языков. Всего на конкурс было прислано более 120 заявок. Короткий список премии «Просветитель» будет объявлен в октябре 2022 года. Лауреатов книжных премий «Просветитель» и «Просветитель.Перевод», а также победителя в новой номинации «ПолитПросвет» наградят 22 декабря, в годовщину смерти основателя премий Дмитрия Борисовича Зимина.

Издательство Corpus представлено в длинном списке книгой Пола Сена «Холодильник Эйнштейна. Как перепад температур объясняет Вселенную» (перевод Заура Мамедьярова).

Термодинамика изучает свойства энергии и энтропии, которыми объясняется поведение множества физических систем, от клеток живых организмов до черной дыры в сердце нашей Галактики. Тем не менее термодинамика, как правило, остается в тени других разделов физики. Стремясь исправить эту несправедливость, Сен рассказывает историю этой науки и знакомит читателей с трудами целого ряда блестящих инженеров, физиков, биологов, космологов и математиков, от Сади Карно до лорда Кельвина, Джеймса Джоуля, Альберта Эйнштейна, Эмми Нётер, Алана Тьюринга и Стивена Хокинга.

«Страшным словом "термодинамика" называется, пожалуй, самая полезная и универсальная научная теория из всех когда-либо созданных. Судя по названию, это узкая научная дисциплина, которая занимается исключительно поведением теплоты. Истоки теории действительно таковы, но она разрослась гораздо шире и теперь дает нам способ постичь загадки Вселенной. В ее основе лежат три понятия: энергия, энтропия и температура. Если бы люди не представляли их себе и не знали законов, которым они подчиняются, остальная наука — физика, химия и биология — была бы несостоятельной. Законы термодинамики управляют всем — от атомов до живых клеток, от двигателей, питающих энергией мир, до черной дыры в центре галактики. Термодинамика объясняет, почему нам необходимо есть и дышать, как включается свет и каким будет конец Вселенной. Термодинамика — это область знаний, на которой основан современный мир. После ее открытия человечество сделало самый большой в своей истории шаг вперед. Мы живем дольше, а наше здоровье крепче, чем когда-либо ранее. Большинство детей, которые рождаются сегодня, становятся взрослыми. Хотя в настоящем хватает проблем, мало кто из нас согласился бы поменяться местами со своими предками. Всё это объясняется не только термодинамикой, но без нее ничего бы не вышло. От канализационных насосов до реактивных двигателей, от надежного снабжения электроэнергией до биохимии спасающих жизни лекарств — все технологии, которые мы воспринимаем как должное, требуют, чтобы мы понимали, что такое энергия, температура и энтропия. И всё же, несмотря на свою важность, термодинамика остается Золушкой среди наук. С ней поверхностно знакомятся в курсе школьной физики, причем об энтропии — ключевой концепции для понимания Вселенной — на уроках упоминается лишь вскользь», — пишет Пол Сен в прологе своей книги.

Предлагаем прочитать фрагмент книги.

 

Энтропия

Die Entropie der Welt strebt einem Maximum zu*.
Рудольф Клаузиус

Уильяму Томсону было недостаточно предсказать конец времени. Вскоре после этого ему в голову пришла идея, которая вписала его имя в научный лексикон. Ею стала так называемая абсолютная температурная шкала.

В то время температура измерялась при наблюдении за расширением таких веществ, как ртуть. Такой способ часто применяется и сегодня. Однако, как показывает следующий пример, он может привести к ошибкам.

Поместите ртутный термометр в холодильник. Он показывает 1 °C. Выньте его из холодильника. Ртуть расширяется, и столбик достигает 4 °C. (В нашем примере, хотя воздух в кухне теплее, чем внутри холодильника, измерения происходят в холодный день.)

Эти показания основаны на принятом правиле, которое гласит, что расширение ртути примерно на 0,018 % свидетельствует о повышении температуры на один градус Цельсия. (Столбик термометра очень тонок, чтобы столь незначительное изменение объема ртути можно было легко разглядеть.)

Но насколько надежен этот метод? Покажет ли другое вещество такое же изменение температуры? Представьте, например, термометр с водным столбиком. Произведите описанные выше измерения.

Вы увидите, что вода, покинув холодильник, не расширится, а сожмется. Реальная температура холодильника и кухни не изменилась, но вещество, используемое для ее измерения, ведет себя совсем иначе. Ртуть говорит, что в кухне теплее, чем в холодильнике, а вода словно намекает на обратное. Какому из веществ верить?

Томсон понял, как освободить температуру от способности вещества расширяться и сжиматься при нагревании и охлаждении. Иными словами, он нашел способ разработать "абсолютную" температурную шкалу. Для этого он представил идеальный двигатель Карно в качестве термометра. Чтобы проследить его логику, нам придется пораскинуть мозгами.

Представьте башню, стоящую на площади в средневековой деревне. Жители деревни хотят прорубить в ней окна, расположенные по вертикали на одинаковом расстоянии друг от друга. Но у них нет надежных линеек. При этом у них есть передвижная водяная мельница, и они могут измерять количество получаемой ею работы в единицах, называемых пафами.

Деревенские инженеры устанавливают на вершину башни резервуар с водой. Прямо под ним они ставят мельницу и пускают на нее воду, чтобы получать тем самым работу.

Рабочие постепенно опускают мельницу всё ниже, пока она не произведет один паф работы. Они отмечают эту точку на башне и определяют расстояние до нее как "один шаг" от верхушки башни.

Мельница опускается дальше, пока "пафометр" не покажет два. Эта точка на два шага ниже верхушки башни.

И так далее. При каждом следующем пафе работы мельница спускается на один шаг ниже. Жители деревни прорубают в башне окна в пяти шагах друг от друга, уверенные, что расстояние между ними одинаково.

 

Измерение высоты при помощи водяной мельницы

Томсон применил этот метод для определения температуры, заменив водяную мельницу идеальным тепловым двигателем, а шаги высоты — градусами температуры.

Сначала температура в нагревателе и охладителе двигателя одинакова. Тепловой поток отсутствует. Двигатель не работает.

Понижайте температуру охладителя, пока двигатель не произведет один паф работы. Определите, что охладитель в этот момент на один градус холоднее нагревателя.

Продолжайте. Когда двигатель произведет два пафа работы, охладитель окажется на два градуса холоднее. При трех пафах он будет на три градуса холоднее и так далее.

Такой двигатель может работать термометром.

Чтобы измерить, скажем, температуру в морозилке, используйте ее в качестве охладителя двигателя. Заметьте количество произведенной работы. Если оно равняется 100 пафам, то температура в морозилке на 100 градусов ниже, чем в нагревателе.

Это абсолютная величина, которая не зависит от термических свойств веществ.

Такое понимание температуры дает мало практической пользы. Сконструировать идеальный двигатель невозможно, а необходимость запускать двигатель всякий раз, когда нужно измерить температуру, кажется нелепостью.

Но это шаг вперед. Не забывайте, что в двигателе часть теплоты, которая перемещается из нагревателя, становится работой, а часть сбрасывается в охладитель. По мере снижения температуры охладителя это соотношение становится всё более выгодным.

Затем наступает момент, когда температура охладителя снижается до такой степени, что вся теплота из нагревателя преобразуется в работу.

Это конечная остановка. Преобразуя всю получаемую теплоту в работу, двигатель функционирует на пределе возможностей. В ином случае он производил бы работу из ничего, нарушая закон сохранения энергии. Следовательно, температура охладителя, при которой это происходит, становится самой низкой из возможных температур.

У нашей Вселенной есть пределы. Одним примером может служить скорость света, превзойти которую ничто не в силах. Другим — самая низкая температура Томсона.

Это "абсолютный нуль", и его существование проливает свет на феномен, который наблюдали, но никак не могли объяснить многие ученые, — влияние температуры на объем, занимаемый газом. Наполните шарик воздухом и охладите его на уровне моря, чтобы давление воздуха на него не менялось. При снижении температуры воздух сжимается. При этом скорость сжатия воздуха растет по мере его охлаждения. Таким образом, при снижении температуры на 50 °C с 50° до 0° объем воздуха сократится сильнее, чем при снижении со 100° до 50°.

В XIX веке ученые могли охлаждать газы примерно до –130 °C, но точно не знали, что происходит при более низких температурах. Одни газы сжижались. Другие, например кислород и азот, не сжижались, а продолжали сжиматься. Экстраполяция графика зависимости объема газа от температуры показывала, что по достижении –273 °C газ не будет занимать пространства, а следовательно, не будет и оказывать давление.

Это согласуется с выводом Томсона, что теоретически существует температура, при которой двигатель не тратит теплоту.

Если температура газа в цилиндре идеального двигателя составляет –273 °C, то этот газ не сопротивляется давлению. Следовательно, поршень можно вернуть в исходное положение, не прикладывая никаких усилий.

Следуя такой логике, Томсон сделал вывод, что нуль его абсолютной шкалы соответствует –273 °C, о чем говорило и поведение газа. Для удобства он приравнял один градус своей шкалы к одному градусу Цельсия.

Столетие спустя участники X Генеральной конференции по мерам и весам, состоявшейся в 1954 году в городе Севр неподалеку от Парижа, постановили, что абсолютной шкале следует присвоить имя Томсона. Поскольку в 1892 году он был награжден титулом лорда Кельвина, единицы шкалы назвали кельвинами. Последние измерения показывают, что –273,15 °C соответствуют 0 кельвинов. На уровне моря температура таяния льда равняется 273,15 кельвина, а температура кипения воды — 373,15 кельвина.

Благодаря Томсону температуру можно рассматривать в качестве фундаментального свойства любого тела, как и его массу. Разные тела — будь то жареное яйцо, золотой самородок или объем воздуха — имеют определенную массу, измеряемую в килограммах, из чего бы они ни состояли. Шкала Кельвина позволяет подобным образом измерять их температуру. Как и с массой, физики могут изучать поведение и свойства температуры с помощью математических уравнений, будучи уверенными, что ее определение не зависит от непостоянных характеристик вещества. Можно сказать, что температурой обладают даже черные дыры.

* * *

В 1850 х годах Клаузиус продолжал усердно трудиться в Берлине, а затем в Цюрихе. Он всё больше узнавал о рассеянии теплоты. Плодом его работы стало новое понятие энтропии — физической величины, по важности сравнимой с энергией. Этот секрет таился в способах перемещения теплоты.

Представьте просторный дом с большим количеством комнат. В одних комнатах стоят батареи, поэтому в них тепло. В других отопления нет, поэтому в них холодно. Все стены изолированы, а смежные двери закрыты.

Выключите батареи и раскройте двери, соединяющие комнаты. Теплота пойдет из теплых комнат в холодные. Вскоре везде в доме установится одинаковая температура.

Клаузиус ввел понятие энтропии, чтобы математически описать механизм перераспределения теплоты. В примере с домом он, по сути, сказал, что энтропия — это мера распространения теплоты в пределах стен. Сначала большая часть теплоты сконцентрирована в небольшом количестве комнат. Во многих других комнатах холодно. Теплота "не рассеяна". Существует большая разница температур. Клаузиус определил, что энтропия при таком раскладе невысока.

Когда мы открываем двери, теплота распространяется по дому и температура в комнатах начинает выравниваться. По определению Клаузиуса, энтропия дома увеличивается. Чем меньше разница температур и чем равномернее распределена теплота, тем выше энтропия.

Чтобы понять, как энтропия меняется при перераспределении тепла, представьте дом, где всего две комнаты, теплая и холодная.

Энтропия — это мера рассеяния теплоты. Это значит, что в каждой комнате своя энтропия, показывающая количество рассеянной в этой комнате теплоты. Назовем их Энтропия (теплой комнаты) и Энтропия (холодной комнаты).

Энтропию всего двухкомнатного дома можно вычислить по формуле Энтропия (теплой комнаты) + Энтропия (холодной комнаты).

Дверь открывается. Теплота перемещается. В теплой комнате становится холоднее, а в холодной — теплее.

Теперь в теплой комнате рассеяно меньше теплоты. Иными словами, Энтропия (теплой комнаты) уменьшилась.

Но в холодной комнате рассеяно больше теплоты. Иными словами, Энтропия (холодной комнаты) увеличилась.

Клаузиус следующим образом определил изменения энтропии.

Когда некоторое количество теплоты выходит из теплой комнаты, энтропия этой комнаты уменьшается в меньшей степени, чем энтропия холодной комнаты увеличивается при поступлении в нее того же количества теплоты.

Следовательно, в примере с двумя комнатами при перемещении теплоты Энтропия (холодной комнаты) увеличивается в большей степени, чем уменьшается Энтропия (теплой комнаты).

И это значит, что энтропия всего двухкомнатного дома увеличивается.

Определив энтропию таким образом, Клаузиус нашел математический способ описать свой закон о том, что теплота всегда перемещается из горячей зоны в холодную, если только ей ничего не мешает. В любой системе, изолированной от внешнего мира, энтропия всегда увеличивается.

Алгебраически это записывается так: ΔS >= 0. Это короткое уравнение — одно из самых важных во всей науке. Δ — это греческая буква дельта, которая в математике часто означает изменение; >= значит "больше или равно". Буквой S Клаузиус обозначил энтропию. Существует прелестная, но ничем не подкрепленная история, что он выбрал эту букву в честь Сади Карно.

Идея, что одинаковое количество теплоты приводит к более значительному изменению энтропии в холодной зоне, чем в теплой, может показаться странной. Но проведем такую аналогию: представьте шумный, многолюдный паб рядом с тихой библиотекой. Пятеро дебоширов выходят из паба. Гул становится тише на неразличимую величину. Далее эти пятеро заходят в библиотеку. Шума становится заметно больше. Когда группа шумных людей входит в тихое место, шума там становится гораздо больше, чем его становится меньше в оживленном месте, из которого они пришли.

Подобным образом, когда некоторое количество теплоты выходит из теплой комнаты, энтропия там уменьшается не так значительно, как она увеличивается при поступлении того же количества теплоты в холодную комнату.

Итак, если мы говорим, что энтропия системы увеличивается, значит, теплота внутри нее рассеивается сильнее.

Однако, хотя уравнение Клаузиуса показывает, что так обычно и происходит, оно не определяет скорость увеличения энтропии.

Если стены комнат изолированы, а двери закрыты, то скорость увеличения энтропии может замедлиться почти до нуля.

Такой ход мысли дает еще одно преимущество. Он помогает нам рассматривать двигатели в качестве устройств, которые используют низкую энтропию.

Замените открытые двери в доме тепловыми двигателями. Теплота проходит по ним, перемещаясь из теплых комнат в холодные. В каждом двигателе часть теплоты преобразуется в работу — возможно, благодаря этому он выкачивает воду из шахты. Остальная ее часть рассеивается. В конце концов температура в комнатах выравнивается. Как только энтропия дома достигнет максимума, двигатели перестанут работать. После этого теплота в доме станет бесполезной.

 

Использование низкой энтропии с помощью двигателей

Увеличение энтропии, таким образом, служит мерой снижения полезности теплоты.

Всё это может показаться надуманным. Но пример с многокомнатным домом позволяет понять любую систему, где рассеивается теплота. Это некое подобие современного мира. Мы высвобождаем теплоту, сконцентрированную в ископаемом топливе, атомных ядрах, солнечном свете, геотермальных источниках и ветре. При ее перемещении мы преобразуем часть ее в работу, которая обеспечивает функционирование различных систем в наших домах, а также заводов и транспорта.

Жизнь также подчиняется этому закону. Растения живут, рассеивая солнечную энергию, а животные — рассеивая калории, получаемые из пищи.

Формула ΔS >= 0 лежит в основе всего.

В 1865 году Клаузиус пересмотрел два начала термодинамики, которые впервые сформулировал в статье, опубликованной пятнадцатью годами ранее. Вместо слова "сила" он использовал термин "энергия", а также ввел понятие "энтропия". Его законы гласят:

1. Энергия вселенной неизменна.

2. Энтропия вселенной стремится к максимуму.

(Под "вселенной" здесь понимается любая закрытая или изолированная система. Однако, поскольку за пределами Вселенной, в которой мы живем, ничего не существует, ее энергия также неизменна, а энтропия увеличивается. На интуитивном уровне второй закон можно сформулировать следующим образом: энтропия любой закрытой системы стремится к увеличению.)

Два этих лаконичных утверждения свидетельствуют о глубине человеческого ума и воображения. Они представляют собой не менее важную научную веху, чем законы движения Ньютона, которые были сформулированы двумя столетиями ранее.

* "Энтропия мира стремится к максимуму" (нем.).

 

Ранее в рубрике «Медленное чтение» были представлены следующие книги, вошедшие в длинной список премии «Просветитель.Перевод»:

Алейда Ассман. Европейская мечта. Переизобретение нации / пер. с нем.: Борис Хлебников; редактор Сергей Кокурин. — М.: Новое литературное обозрение, 2022.

Карл Бергстром, Джевин Уэст. Полный бред! Скептицизм в мире больших данных / пер. с англ.: Елизавета Пономарева; научный редактор Надежда Чеботкова, литературный редактор Ольга Дергачева, ответственный редактор Юлия Константинова. — М.: Манн, Иванов и Фербер, 2022.

Нолан Гассер. Почему вам это нравится? Наука и культура музыкального вкуса / пер. с англ.: Алексей Михеев, Кира Михеева; редактор Алена Щекотихина, ответственный редактор Дарья Рыбина. — М.: КоЛибри, Азбука-Аттикус, 2022.

Ральф Дарендорф. Соблазны несвободы. Интеллектуалы во времена испытаний / пер. с нем.: Марк Гринберг; редактор Сергей Кокурин. — М.: Новое литературное обозрение, 2021.

Майкл Ко. Разгадка кода майя: как ученые расшифровали письменность древней цивилизации / пер. с англ и науч. ред.: Дмитрий Беляев; литературный редактор Галина Беляева, ответственный редактор Ирина Борисова. — М.: Бомбора, 2021.

Сьюзан Линди. Разум в тумане войны. Наука и технологии на полях сражений / пер. с англ.: Наталья Колпакова; научный редактор Александр Гольц, редактор Вячеслав Ионов. — М.: Альпина нон-фикшн, 2022.

Дуглас Смит. Российская миссия. Забытая история о том, как Америка спасла Советский Союз от гибели / пер. с англ.: Евгения Фоменко; редактор Мария Нестеренко. — М.: CORPUS, 2021.

Крис Стрингер. Остались одни. Единственный вид людей на земле / пер. с англ.: Елена Наймарк; редакторы: Александр Туров, Екатерина Владимирская. — М.: CORPUS, 2021.

Карл Циммер. Живое и неживое. В поисках определения жизни / пер. с англ.: Мария Елифёрова; научный редактор Елена Наймарк, редактор Анастасия Ростоцкая. — М.: Альпина нон-фикшн, 2022.

 

Редакция

Электронная почта: [email protected]
VK.com Twitter Telegram YouTube Яндекс.Дзен Одноклассники
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2022.