будущее есть!
  • После
  • Конспект
  • Документ недели
  • Бутовский полигон
  • Колонки
  • Pro Science
  • Все рубрики
    После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша
После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша

Конспекты Полит.ру

Смотреть все
Алексей Макаркин — о выборах 1996 года
Апрель 26, 2024
Николай Эппле — о речи Пашиняна по случаю годовщины геноцида армян
Апрель 26, 2024
«Демография упала» — о демографической политике в России
Апрель 26, 2024
Артем Соколов — о технологическом будущем в военных действиях
Апрель 26, 2024
Анатолий Несмиян — о технологическом будущем в военных действиях
Апрель 26, 2024

После

Смотреть все
«После» для майских
Май 7, 2024

Публичные лекции

Смотреть все
Всеволод Емелин в «Клубе»: мои первые книжки
Апрель 29, 2024
Вернуться к публикациям
геофизика
Ноябрь 18, 2025
Pro Science

Геофизики изучили космические хоры в радиационном поясе Земли

Геофизики изучили космические хоры в радиационном поясе Земли
ps_8517114274_52e5aa6e7c_o
Радиационный пояс Земли. Источник: NASA Goddard Space Flight Center/Flickr

Ученые из Полярного геофизического института исследуют низкочастотные сигналы, которые способны влиять на радиационный пояс Земли. Прогноз поведения пояса позволит минимизировать вред от космической радиации для спутников и космонавтов. В будущем ученые видят возможность искусственно влиять на радиационный пояс. Одна из статей по результатам исследований опубликована в журнале Geophysical Research Letters. Исследования поддержаны грантом Российского научного фонда (РНФ).

«Если мы сможем понять механизмы генерации и распространения в магнитосфере таких сигналов и их взаимодействие с энергичными заряженными частицами, это позволит нам в перспективе лучше прогнозировать возрастание потоков радиации на разных высотах. А научившись их прогнозировать, мы сможем вовремя включать дополнительную защиту или просто выключать наиболее чувствительные приборы, и это поможет нам лучше защитить аппаратуру и людей, которые работают в космосе», – сообщил главный научный сотрудник Полярного геофизического института, доктор физико-математических наук Андрей Демехов.

Магнитное поле Земли влияет на потоки заряженных частиц – протонов и электронов – от Солнца (солнечный ветер), заставляя их менять траекторию. Возникающие при этом электрические поля ускоряют заряженные частицы. Эти частицы накапливаются в околоземном космосе, поскольку геомагнитное поле образует для них гигантскую магнитную ловушку. Наиболее энергичные частицы (с энергией порядка мегаэлектрон-вольта и более — это в миллионы раз больше энергии основной доли частиц) образуют радиационные пояса Земли. Их радиационная опасность зависит от количества заряженных частиц и их энергии. Ускоренные (энергичные) заряженные частицы проникают сквозь защиту скафандров и космических аппаратов, нанося вред здоровью космонавтов и повреждая ценную аппаратуру. В спокойные периоды их основное скопление находится выше траектории полета космических станций, однако во время магнитных бурь энергичные частицы могут опускаться вплоть до верхних слоев атмосферы – «высыпаться» в атмосферу.

За изменение концентрации энергичными электронами радиационных поясов Земли отвечают волны очень низкочастотного (ОНЧ) диапазона: от 3 до 30 килогерц. В этом диапазоне существуют так называемые хоровые излучения (хоры) – короткие импульсы (элементы), по звуку напоминающие птичьи трели. Если вывести их на радиоприемник, мы услышим высокие отрывистые свистки, как правило, быстро повышающиеся по частоте. Эти сигналы создаются в области радиационного пояса, а механизм их создания до сих пор вызывает споры среди исследователей.

При помощи таких сигналов передается энергия между ускоренными электронами: частицы с меньшими энергиями генерируют волны, а с большими – поглощают их. Что позволяет последним разогнаться до скоростей света. Таких электронов относительно мало, но именно они представляют опасность для космической аппаратуры. Пока одни электроны ускоряются и взаимодействию с волнами, другие «высыпаются» из геомагнитной ловушки в атмосферу. Найти общий баланс между ускорением и потерями частиц — сложная задача.

Спектрограммы хоровых элементов, зарегистрированных на Земле (вверху) и на спутнике Van Allen Probe A (RBSP-A, внизу). Запись наземных данных сдвинута на 1,3 с, то есть сигналы сначала были приняты наземной станцией (Каннуслехто, Финляндия), и лишь спустя 1,3 с – на спутнике. Цветовая шкала обозначает спектральную плотность энергии волн. Из статьи Demekhov A.G. et al. (2017), Geophys. Res. Lett., doi:10.1002/2017GL076139.

Сегодня данных для изучения ОНЧ-излучений накоплено много, однако, случаи наблюдений, когда одинаковые сигналы наблюдаются хотя бы в двух разных точках пространства, достаточно редки, а для хоровых сигналов — уникальны.

«Несмотря на более чем пятидесятилетнюю историю изучения и десятки публикаций только за последние пять лет, до сих пор никому не удавалось наблюдать одну и ту же последовательность хоровых элементов на земле и в магнитосфере. Нам впервые удалось найти такое событие, используя данные наземных измерений в Финляндии и спутников Van Allen Probes», – рассказал Андрей Демехов.

Зарегистрировав хоры на Земле и на спутнике, ученые обнаружили, что хоровые сигналы могут достигать поверхности Земли, отражаться от нее и возвращаться в область их генерации на расстояниях в десятки тысяч километров. При этом сложная последовательность хоров, позволяющая воздействовать на электроны, практически не искажается. Формирование и изменение во времени таких сигналов и особенности их воздействия на заряженные частицы – основные вопросы, на решение которых направлена работа ученых.

Как известно, космос и планеты постоянно «шумят», посылая огромное количество излучений на разных частотах. Однако не все эти сигналы сливаются в монотонное шипение, одинаковое во всех направлениях. Возникновение сигналов в узком частотном диапазоне, в частности хоровых излучений, можно рассматривать как пример самоорганизации в системе космоса, поэтому исследование их природы представляет большой интерес с точки зрения фундаментальной науки. Их описание – непростая задача, учитывая, что система обладает сложным характером нелинейности. Помимо того, что низкочастотные электромагнитные волны регулируют динамику радиационных поясов Земли, они формируют электромагнитную обстановку в околоземном и околопланетном пространстве. Генерируемые электромагнитные сигналы несут важную диагностическую информацию.

В последнее время интенсивно обсуждаются перспективы активного воздействия на радиационные пояса (их «очистки») посредством электромагнитных сигналов искусственного происхождения. Сгенерировав низкочастотный сигнал с подходящими свойствами, можно было бы «выбивать» заряженные частицы из магнитных ловушек и тем самым уменьшать радиацию в некоторой области пространства. Но действия даже самой мощной из существующих установок хватит лишь на кратковременный и локальный эффект.

Исследования ведутся совместно с коллегами из Института прикладной физики Российской академии наук (ИПФ РАН), Института физики атмосферы АН Чехии, факультета математики и физики Карлова университета в Праге и Геофизической обсерватории Соданкюля в Финляндии.

читайте также
Pro Science
Эксперименты империи. Адат, шариат и производство знаний в Казахской степи
Май 15, 2024
Pro Science
Раскопки в Телль Ваджеф
Май 15, 2024
ЗАГРУЗИТЬ ЕЩЕ

Бутовский полигон

Смотреть все
Начальник жандармов
Май 6, 2024

Человек дня

Смотреть все
Человек дня: Александр Белявский
Май 6, 2024
Публичные лекции

Лев Рубинштейн в «Клубе»

Pro Science

Мальчики поют для девочек

Колонки

«Год рождения»: обыкновенное чудо

Публичные лекции

Игорь Шумов в «Клубе»: миграция и литература

Pro Science

Инфракрасные полярные сияния на Уране

Страна

«Россия – административно-территориальный монстр» — лекция географа Бориса Родомана

Страна

Сколько субъектов нужно Федерации? Статья Бориса Родомана

Pro Science

Эксперименты империи. Адат, шариат и производство знаний в Казахской степи

О проекте Авторы Биографии
Свидетельство о регистрации средства массовой информации Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством Российской Федерации по делам печати, телерадиовещания и средств массовой информации.

© Полит.ру, 1998–2024.

Политика конфиденциальности
Политика в отношении обработки персональных данных ООО «ПОЛИТ.РУ»

В соответствии с подпунктом 2 статьи 3 Федерального закона от 27 июля 2006 г. № 152-ФЗ «О персональных данных» ООО «ПОЛИТ.РУ» является оператором, т.е. юридическим лицом, самостоятельно организующим и (или) осуществляющим обработку персональных данных, а также определяющим цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.

ООО «ПОЛИТ.РУ» осуществляет обработку персональных данных и использование cookie-файлов посетителей сайта https://polit.ru/

Мы обеспечиваем конфиденциальность персональных данных и применяем все необходимые организационные и технические меры по их защите.

Мы осуществляем обработку персональных данных с использованием средств автоматизации и без их использования, выполняя требования к автоматизированной и неавтоматизированной обработке персональных данных, предусмотренные Федеральным законом от 27 июля 2006 г. № 152-ФЗ «О персональных данных» и принятыми в соответствии с ним нормативными правовыми актами.

ООО «ПОЛИТ.РУ» не раскрывает третьим лицам и не распространяет персональные данные без согласия субъекта персональных данных (если иное не предусмотрено федеральным законом РФ).