будущее есть!
  • После
  • Конспект
  • Документ недели
  • Бутовский полигон
  • Колонки
  • Pro Science
  • Все рубрики
    После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша
После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша

Конспекты Полит.ру

Смотреть все
Алексей Макаркин — о выборах 1996 года
Апрель 26, 2024
Николай Эппле — о речи Пашиняна по случаю годовщины геноцида армян
Апрель 26, 2024
«Демография упала» — о демографической политике в России
Апрель 26, 2024
Артем Соколов — о технологическом будущем в военных действиях
Апрель 26, 2024
Анатолий Несмиян — о технологическом будущем в военных действиях
Апрель 26, 2024

После

Смотреть все
«После» для майских
Май 7, 2024

Публичные лекции

Смотреть все
Всеволод Емелин в «Клубе»: мои первые книжки
Апрель 29, 2024
Вернуться к публикациям
физика энергоэффективность Нобелевская премия
Октябрь 7, 2014
Pro Science
Руссо Максим

Как синий свет стал белым

Как синий свет стал белым
ps_1024px-LED_washlight
Светодиодный фонарь для сценического освещения. Источник: Wikimedia Commons

Японские ученые Исаму Акасаки, Хироси Амано и Сюдзи Накамура (последний сейчас живет в США) стали лауреатами Нобелевской премии в области физики за изобретение синих светодиодов. Аналитики приходят в себя от неожиданности: они не смогли предсказать, что Нобелевский комитет в этом году обратит внимание на прикладную сферу. Японское правительство может быть довольно: объявленный в 2001 году план «30 Нобелевских премий за полвека» еще немного приблизился к реализации. А мы попытаемся разобраться, что же привлекло внимание Нобелевского комитета.

 

Как и другие полупроводниковые приборы, светодиоды состоят из двух частей, обладающих разной проводимостью: электронной (n-типа) и дырочной (p-типа). В первой области есть избыток отрицательных зарядов, во второй – их недостаток, поэтому носителями положительного заряда являются вакантные места в электронных оболочках атомов – «дырки». Между p-областью и n-областью расположена граница – p-n-переход. Если к p-области диода подключить положительный полюс источника питания, а к n-области – отрицательный, электроны и «дырки» устремятся через p-n-переход к соответствующим полюсам, и в цепи возникнет электрический ток. Если полярность подключения поменять, тока в цепи не будет. Это общее свойство диодов.

Для светодиодов характерно еще и то, что при подключении тока в области p-n-перехода они излучают свет. Это происходит благодаря тому, что электроны занимают вакантные позиции в оболочках атомов (там, где были «дырки»), и при этом испускаются фотоны. Длина волны, какого цвета свечение мы увидим, зависит от материала полупроводника

Впервые свечение полупроводника наблюдал в 1907 году сотрудник Маркони британец Генри Раунд. В этот эффект независимо открыл 1923 году советский физик Олег Лосев, работавший тогда в Нижнем Новгороде. Но природа этого явления была тогда не до конца понятна ученым, а перспективы его применения неясны. Дальнейшие исследования Лосева были связаны с другим применением полупроводниковых материалов – созданием кристаллических радиодетекторов, но еще долгое время в англоязычной литературе свечение полупроводника называлось Losev light «свечение Лосева».

В начале 1960-х созданы инфракрасный светодиод (Роберт Байард, Гари Питтман) и светодиод, дающий красный свет видимого диапазона (Ник Холоньяк). Сначала светодиоды были довольного дорогими, а яркость их была еще мала, но со временем стоимость начала снижаться, а яркость наоборот расти, и светодиоды уже могли бы теоретически стать конкурентами ламп накаливания, если бы были способны давать свет широкого спектра (белый). Пока же они оставались красными и использовалась, в основном, в различных индикаторах.

В начале 70-х годов появились светодиоды желтого (Джордж Крафорд) и зеленого цвета свечения. Создаваемый ими световой поток к началу 1990-х достиг уровня в 1 люмен (50 ваттная лампа накаливания дает световой поток в 50 люменов). Но для успешного применения в качестве источников освещения этого было, конечно, еще недостаточно.

Сегодняшние лауреаты смогли решить две проблемы. Они разработали светодиоды большой яркости, а также создали светодиоды синего света. И Исаму Акасаки с Хироси Амано, работающие в университете города Нагоя, и Сюдзи Накамура, который в 1980-х был сотрудником компании «Nichia Chemical Industries», сделали ставку на нитрид галлия как основу светодиодов. Уже было известно, чтото вещество дает синее свечение, однако при выращивание кристаллов нитрида галлия было очень трудоемким и дорогим. Акасаки и Амано обнаружили, изучая вещество под сканирующим электронным микроскопом, что этот процесс увеличивает эффективность p-слоя. Это происходило из-за того, что поток электронов удалял мешающие формированию p-слоя ядра водорода. Им удалось в 1992 году создать яркий синий светодиод. Независимо в том же году создал светодиод Накамура. Он сумел получить высококачественные кристаллы нитрида галлия, выращивая кристаллические слои сначала при низкой, а потом при высокой температуре.

Получение синих светодиодов дало новый импульс к развитию светодиодного освещения. Полупроводниковые источники света стали выигрывать конкурентную борьбу. Они потребляют меньше энергии, дают при этом свет большой яркости. В отличие от флуоресцентных ламп они не содержат ртути. В отличие от ламп накаливания, они без потерь преобразуют энергию в свет, не тратя ее на выделение тепла. К тому же они небольшого размера, мало весят, долго служат, эффективно работают при низких температурах, не требуют времени на прогрев или выключение. Так как светодиоды не нагреваются при работе, они не создают опасность пожара.

Усилия многих разработчиков привели к дальнейшему совершенствованию светодиодных ламп. Последнее рекордное достижение в уровне световой отдачи (отношении излучаемого светового потока к потребляемой им мощности) составляет чуть более 300 люмен / ватт, то есть один светодиод по этому параметру равен примерно 20 стоваттным лампам накаливания или 17 стоваттным галогеновым лампам.

 

Сравнительная световая отдача масляной лампы, лампы накаливания, флуоресцентной лампы и светодиода (люмен / ватт).

Благодаря синим светодиодам стало возможным получение белого света. Для этого существуют два способа. Белый цвет получают, используя комбинацию трех светодиодов: красного, зеленого и синего. Или же в лампе применяют синие светодиоды, но слой люминофора преобразует их излучение в свет в относительно широкой спектральной полосе с максимумом в области желтого. В результате излучение светодиода и люминофора, смешиваясь, дают белый свет различных оттенков.

 

Конструкция белого светодиода (чип – собственно светодиод, дающий синий свет, люминофор позволяет преобразовать его в белый).

Использование синего света в светодиодах дает еще одну выгоду. Так как длина волны синего цвета короче, чем у, например, инфракрасного, его можно более эффективно использовать в устройствах хранения и передачи информации. В компакт-дисках (CD) для чтения информации используется инфракрасный лазерный луч с длиной волны 780 нм. Значительно большая емкость дисков Blu-Ray достигается за счет использования лазера синего-фиолетового цвета (405 нм). Создание синего лазера – тоже дело рук Акасаки и Амано с одной стороны, а также Накамуры с другой. Синий светодиод служит важнейшим компонентом этого лазера.

Руссо Максим
читайте также
Pro Science
Эксперименты империи. Адат, шариат и производство знаний в Казахской степи
Май 15, 2024
Pro Science
Раскопки в Телль Ваджеф
Май 15, 2024
ЗАГРУЗИТЬ ЕЩЕ

Бутовский полигон

Смотреть все
Начальник жандармов
Май 6, 2024

Человек дня

Смотреть все
Человек дня: Александр Белявский
Май 6, 2024
Публичные лекции

Лев Рубинштейн в «Клубе»

Pro Science

Мальчики поют для девочек

Колонки

«Год рождения»: обыкновенное чудо

Публичные лекции

Игорь Шумов в «Клубе»: миграция и литература

Pro Science

Инфракрасные полярные сияния на Уране

Страна

«Россия – административно-территориальный монстр» — лекция географа Бориса Родомана

Страна

Сколько субъектов нужно Федерации? Статья Бориса Родомана

Pro Science

Эксперименты империи. Адат, шариат и производство знаний в Казахской степи

О проекте Авторы Биографии
Свидетельство о регистрации средства массовой информации Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством Российской Федерации по делам печати, телерадиовещания и средств массовой информации.

© Полит.ру, 1998–2024.

Политика конфиденциальности
Политика в отношении обработки персональных данных ООО «ПОЛИТ.РУ»

В соответствии с подпунктом 2 статьи 3 Федерального закона от 27 июля 2006 г. № 152-ФЗ «О персональных данных» ООО «ПОЛИТ.РУ» является оператором, т.е. юридическим лицом, самостоятельно организующим и (или) осуществляющим обработку персональных данных, а также определяющим цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.

ООО «ПОЛИТ.РУ» осуществляет обработку персональных данных и использование cookie-файлов посетителей сайта https://polit.ru/

Мы обеспечиваем конфиденциальность персональных данных и применяем все необходимые организационные и технические меры по их защите.

Мы осуществляем обработку персональных данных с использованием средств автоматизации и без их использования, выполняя требования к автоматизированной и неавтоматизированной обработке персональных данных, предусмотренные Федеральным законом от 27 июля 2006 г. № 152-ФЗ «О персональных данных» и принятыми в соответствии с ним нормативными правовыми актами.

ООО «ПОЛИТ.РУ» не раскрывает третьим лицам и не распространяет персональные данные без согласия субъекта персональных данных (если иное не предусмотрено федеральным законом РФ).