будущее есть!
  • После
  • Конспект
  • Документ недели
  • Бутовский полигон
  • Колонки
  • Pro Science
  • Все рубрики
    После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша
После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша

Конспекты Полит.ру

Смотреть все
Алексей Макаркин — о выборах 1996 года
Апрель 26, 2024
Николай Эппле — о речи Пашиняна по случаю годовщины геноцида армян
Апрель 26, 2024
«Демография упала» — о демографической политике в России
Апрель 26, 2024
Артем Соколов — о технологическом будущем в военных действиях
Апрель 26, 2024
Анатолий Несмиян — о технологическом будущем в военных действиях
Апрель 26, 2024

После

Смотреть все
«После» для майских
Май 7, 2024

Публичные лекции

Смотреть все
Всеволод Емелин в «Клубе»: мои первые книжки
Апрель 29, 2024
Вернуться к публикациям
исследования наука искусственный интеллект охрана лесов
Ноябрь 10, 2025
Pro Science

Нейросеть определяет причину гибели лесов по спутниковым снимкам

Нейросеть определяет причину гибели лесов по спутниковым снимкам
ps_rse2194-fig-0007-m
Спутниковые изображения и маски областей ветровалов и усохших деревьев. Источник: Dmitry E. Kislov. Kirill A. Korznikov et al./Zoological Society of London

Ученые Ботанического сада-института ДВО РАН во Владивостоке научили нейросеть распознавать на спутниковых снимках участки поврежденных лесов — ветровалов и усохших деревьев, атакованных жуками-короедами. Метод работает с точностью 94 %. В дальнейшем ученые планируют применить его не только к спутниковым снимкам, но и к изображениям, полученным с беспилотных летательных аппаратов. Новые методы наблюдений за динамикой лесного покрова существенно расширят возможности систем инвентаризации лесного хозяйства и охраны лесных ресурсов: будет намного проще отслеживать и фиксировать изменения, а значит, можно оперативно передавать информацию для дальнейшего принятия мер. Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы в журнале Remote Sensing in Ecology and Conservation, кратко о них сообщает пресс-служба РНФ.

«Мы получили программу, позволяющую находить участки интересующих нас лесных нарушений с экспертной точностью, быстро и на огромных площадях, — рассказывает руководитель проекта по гранту РНФ Кирилл Корзников, ведущий научный сотрудник Ботанического сада-института ДВО РАН. — Мы сравнили наш подход распознавания нарушенных участков лесов с другими "традиционными" методами машинного обучения. Мы превзошли аналоги: точность составила около 94 %. При этом используются лишь общедоступные цветные спутниковые изображения, выполненные в видимом электромагнитном диапазоне, без учета значений спектральных каналов в ультрафиолетовой или инфракрасной части спектра».

С 1990 года площадь лесов на Земле сократилась на 178 миллионов гектаров. Это происходит не только из-за действий человека, но и под влиянием природных стихий, таких как бури и сильные ветра. Еще одним фактором является деятельность насекомых, среди которых печально известен жук короед-типограф, повреждающий еловые леса севера Евразии от Западной Европы до Японии. Для отслеживания повреждений применяют дистанционное зондирование. Благодаря специальным проектам с применением спутников Landsat и Sentinel снимки высокого разрешения можно найти и в открытом доступе. Поэтому они используются для большинства исследований, связанных с мониторингом лесов. Чтобы на таких снимках обнаружить и подсчитать площадь повреждения, используют информацию о яркости пикселей — на результатах их сравнений основан глобальный мониторинг. Использование сверхвысокого разрешения (менее одного метра на пиксель) открывает возможности более точной оценки площадей поврежденных древостоев, выявления мест локальной гибели одиночных деревьев, а также установления причины их гибели.

Исследователи применили сверточные нейронные сети U-Net-подобной архитектуры для распознавания погибших лесов на цветных RGB-снимках сверхвысокого разрешения. Оригинальная нейронная сеть U-Net была создана для анализа биомедицинских изображений в 2015 году. Она позволяет использовать меньшее количество обучающих данных и дает возможность использовать ее, в том числе, для сегментации изображений и распознавания объектов.

У разных типов нарушений лесов есть хорошо узнаваемые паттерны на спутниковых снимках. У авторов уже были опыт визуальной экспертной оценки состояния лесного покрова и данные полевых исследований, выполненных на островах Кунашир и Сахалин. На их основе ученые создали маски целевых областей — ветровалов и усохших деревьев, атакованных короедом-типографом. Маски и соответствующие им спутниковые изображения стали исходными данными для обучения нейронных сетей. Далее обученные нейронные сети были успешно применены к спутниковым снимкам для обнаружения аналогичных типов нарушений в островных лесах.

читайте также
Pro Science
Эксперименты империи. Адат, шариат и производство знаний в Казахской степи
Май 15, 2024
Pro Science
Раскопки в Телль Ваджеф
Май 15, 2024
ЗАГРУЗИТЬ ЕЩЕ

Бутовский полигон

Смотреть все
Начальник жандармов
Май 6, 2024

Человек дня

Смотреть все
Человек дня: Александр Белявский
Май 6, 2024
Публичные лекции

Лев Рубинштейн в «Клубе»

Pro Science

Мальчики поют для девочек

Колонки

«Год рождения»: обыкновенное чудо

Публичные лекции

Игорь Шумов в «Клубе»: миграция и литература

Pro Science

Инфракрасные полярные сияния на Уране

Страна

«Россия – административно-территориальный монстр» — лекция географа Бориса Родомана

Страна

Сколько субъектов нужно Федерации? Статья Бориса Родомана

Pro Science

Эксперименты империи. Адат, шариат и производство знаний в Казахской степи

О проекте Авторы Биографии
Свидетельство о регистрации средства массовой информации Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством Российской Федерации по делам печати, телерадиовещания и средств массовой информации.

© Полит.ру, 1998–2024.

Политика конфиденциальности
Политика в отношении обработки персональных данных ООО «ПОЛИТ.РУ»

В соответствии с подпунктом 2 статьи 3 Федерального закона от 27 июля 2006 г. № 152-ФЗ «О персональных данных» ООО «ПОЛИТ.РУ» является оператором, т.е. юридическим лицом, самостоятельно организующим и (или) осуществляющим обработку персональных данных, а также определяющим цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.

ООО «ПОЛИТ.РУ» осуществляет обработку персональных данных и использование cookie-файлов посетителей сайта https://polit.ru/

Мы обеспечиваем конфиденциальность персональных данных и применяем все необходимые организационные и технические меры по их защите.

Мы осуществляем обработку персональных данных с использованием средств автоматизации и без их использования, выполняя требования к автоматизированной и неавтоматизированной обработке персональных данных, предусмотренные Федеральным законом от 27 июля 2006 г. № 152-ФЗ «О персональных данных» и принятыми в соответствии с ним нормативными правовыми актами.

ООО «ПОЛИТ.РУ» не раскрывает третьим лицам и не распространяет персональные данные без согласия субъекта персональных данных (если иное не предусмотрено федеральным законом РФ).