будущее есть!
  • После
  • Конспект
  • Документ недели
  • Бутовский полигон
  • Колонки
  • Pro Science
  • Все рубрики
    После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша
После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша

Конспекты Полит.ру

Смотреть все
Алексей Макаркин — о выборах 1996 года
Апрель 26, 2024
Николай Эппле — о речи Пашиняна по случаю годовщины геноцида армян
Апрель 26, 2024
«Демография упала» — о демографической политике в России
Апрель 26, 2024
Артем Соколов — о технологическом будущем в военных действиях
Апрель 26, 2024
Анатолий Несмиян — о технологическом будущем в военных действиях
Апрель 26, 2024

После

Смотреть все
«После» для майских
Май 7, 2024

Публичные лекции

Смотреть все
Всеволод Емелин в «Клубе»: мои первые книжки
Апрель 29, 2024
Вернуться к публикациям
РХТУ исследования наука физика химия темная материя
Май 13, 2025
Pro Science

Новый материал на основе гадолиния поможет в поисках темной материи

Новый материал на основе гадолиния поможет в поисках темной материи
ps_Gadolinium-2
Гадолиний. Источник: Jurii/Wikimedia Commons

Ученые Российского химико-технологического университета им. Д. И. Менделеева, НИИ ядерной физики МГУ, Объединенного института ядерных исследований и Белгородского государственного университета разработали гибридный материал на основе пластика и редкоземельного металла гадолиния. Полученный материал сам не обладает радиоактивным фоном и при этом может фиксировать и поглощать постороннее излучение. Эти уникальные свойства позволят использовать его для изготовления оболочек огромных детекторов, предназначенных для обнаружения частиц темной материи. Результаты работы опубликованы в журнале Materials, а сам материал предназначен для эксперимента DarkSide 20K, который планируют запустить в Италии в 2025-2026 гг. Об исследовании рассказал отдел научной коммуникации РХТУ.

По последним данным, темная материя составляет не менее 26,8 % наблюдаемой Вселенной. Она не взаимодействует с электромагнитными волнами, а значит, невидима для большинства существующих приборов. Однако частицы темной материи вступают в гравитационные взаимодействия, благодаря чему присутствие темной материи проявляется в нетипичном поведении некоторых галактик и искажении света далеких звезд.

Частицы темной материи пытаются поймать в огромных камерах-мишенях, наполненных веществом — например, инертным газом аргоном. Эти частицы, пролетая сквозь такую ловушку, могут столкнуться с атомами аргона и рассеяться на них, обнаружив свое присутствие характерными сигналами. Но схожие сигналы могут появиться и от других, событий. Например, при попадании в детектор высокоэнергетичных нейтронов: они выделяются при делении урана или других радиоактивных элементов, входящих в виде примесей в материал детектора, а также могут образоваться при взаимодействии космических лучей с ядрами детектора. Чтобы спрятаться от всепроникающего космического излучения, ловушки темной материи обычно сооружают глубоко под Землей. Дополнительно их упаковывают в оболочки из материалов с максимально низким радиационным фоном, которые поглощают остаточные тепловые нейтроны.

«В международном проекте DarkSide 20К, который реализуется в подземной лаборатории Гран Сассо в Италии, строят 20-тонную камеру с жидким аргоном, которая потенциально сможет уловить частицы темной материи. Этой камере нужна оболочка, поглощающая фоновые нейтроны, чтобы они не влияли на взаимодействие частиц темной материи с ядрами аргона. К тому же, материал оболочки сам по себе должен быть ультранизкофоновым по радиоактивным элементам. Это наша часть проекта: мы работаем над созданием конструкционных элементов из такого материала», — поясняет заведующий кафедрой химии и технологии кристаллов РХТУ и один из авторов работы Игорь Аветисов.

Оболочку гигантской камеры-мишени с аргоном химики РХТУ предложили создать из гибридного материала на основе пластика — полиметилметакрилата, более известного как оргстекло. Этот недорогой и низкофоновый материал содержит большое количество водорода, атомы которого способствуют захвату посторонних фоновых нейтронов. Другой составляющей гибридного материала станет редкоземельный металл гадолиний. Он лучше других нерадиоактивных элементов захватывает тепловые нейтроны. Это свойство гадолиния уже активно используют, например, для контрастирования в МРТ-исследованиях. Гадолиний, с одной стороны, усилит пластик в защите камеры-мишени от радиоактивного излучения, а с другой — позволит фиксировать и оценивать текущий нейтронный фон, чтобы потом отделять от него сигналы от частиц темной материи.

Гибридный органо-неорганический материал должен быть однородным по всему объему — и к тому же ультранизкофоновым. Это значит, что его нужно очистить от радиоактивных урана и тория, которые обычно сопровождают гадолиний при добыче и переработке. Найти нужное количество — более 500 килограммов — чистого гадолиния на рынке металлов практически невозможно. Поэтому ученые взяли различное гадолиний-содержащее сырье и оценили содержание урана и тория. Во всех образцах оно оказалось слишком высоким для оболочки камеры-мишени, поэтому нужно было продумать технологию очистки.

В качестве исходного гадолиниевого сырья использовали хлорид гадолиния. Его хлорировали, а потом термически отжигали, то есть нагревали в вакууме. При нагревании хлориды урана и тория выделялись в отдельные фракции, оставляя гадолиниевый препарат чистым: содержание посторонних примесей в хлориде гадолиния после очистки составляло не более 1×10-11 процента. Такой чистоты уже было достаточно для создания гибридного низкофонового материала. Следующим шагом стало внедрение гадолиния в пластик. Для этого использовалась термическая полимеризация: пластик синтезировали из его мономера в присутствии ацетилацетоната гадолиния, который синтезировали из ультра-низкофонового хлорида гадолиния. Ацетилацетонат гадолиния постепенно растворялся в мономере и равномерно распределялся по объему полиметилметакрилата.

«Нагрев будущего полимера проводится поступенчато, градус за градусом. Для того чтобы полимеризовать образец материала толщиной в 5 см размером 1 м на 1 м, требуется 20–30 суток. Быстрее нельзя. Мне рассказывал коллега из Китая, что он попробовал ускорить процесс — так у него там всё взорвалось! Хорошо, что объем образца был небольшой. А для проекта нам потребуется толщина материала в 15 см, а может быть, и больше», — говорит Игорь Аветисов.

В результате ученые получили желаемый гибридный полимер — небольшие плитки полиметилметакрилата толщиной в 5 см с массовым содержанием гадолиния в 1,5 %. Также они оценили содержание радиоактивных урана и тория в этом материале и показали, что его чистоты достаточно для изготовления корпуса детектора темной материи.

До запуска эксперимента на установке DarkSide 20K еще немало времени: он запланирован на 2025-2026 гг, Но емкость с аргоном начнут строить через пару лет. Кроме того, одновременно с DarkSide в мире сооружают еще несколько мегаустановок для изучения редких физических событий, которым тоже может потребоваться ультранизкофоновый материал.

«Мы давно ведем исследования в области особо чистых материалов. Например, несколько лет назад разработали ультранизкофоновый материал на основе селена и молибдена для проекта по изучению неуловимых нейтрино NEMO во Франции», — рассказывает Игорь Аветисов.

читайте также
Pro Science
Эксперименты империи. Адат, шариат и производство знаний в Казахской степи
Май 15, 2024
Pro Science
Раскопки в Телль Ваджеф
Май 15, 2024
ЗАГРУЗИТЬ ЕЩЕ

Бутовский полигон

Смотреть все
Начальник жандармов
Май 6, 2024

Человек дня

Смотреть все
Человек дня: Александр Белявский
Май 6, 2024
Публичные лекции

Лев Рубинштейн в «Клубе»

Pro Science

Мальчики поют для девочек

Колонки

«Год рождения»: обыкновенное чудо

Публичные лекции

Игорь Шумов в «Клубе»: миграция и литература

Pro Science

Инфракрасные полярные сияния на Уране

Страна

«Россия – административно-территориальный монстр» — лекция географа Бориса Родомана

Страна

Сколько субъектов нужно Федерации? Статья Бориса Родомана

Pro Science

Эксперименты империи. Адат, шариат и производство знаний в Казахской степи

О проекте Авторы Биографии
Свидетельство о регистрации средства массовой информации Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством Российской Федерации по делам печати, телерадиовещания и средств массовой информации.

© Полит.ру, 1998–2024.

Политика конфиденциальности
Политика в отношении обработки персональных данных ООО «ПОЛИТ.РУ»

В соответствии с подпунктом 2 статьи 3 Федерального закона от 27 июля 2006 г. № 152-ФЗ «О персональных данных» ООО «ПОЛИТ.РУ» является оператором, т.е. юридическим лицом, самостоятельно организующим и (или) осуществляющим обработку персональных данных, а также определяющим цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.

ООО «ПОЛИТ.РУ» осуществляет обработку персональных данных и использование cookie-файлов посетителей сайта https://polit.ru/

Мы обеспечиваем конфиденциальность персональных данных и применяем все необходимые организационные и технические меры по их защите.

Мы осуществляем обработку персональных данных с использованием средств автоматизации и без их использования, выполняя требования к автоматизированной и неавтоматизированной обработке персональных данных, предусмотренные Федеральным законом от 27 июля 2006 г. № 152-ФЗ «О персональных данных» и принятыми в соответствии с ним нормативными правовыми актами.

ООО «ПОЛИТ.РУ» не раскрывает третьим лицам и не распространяет персональные данные без согласия субъекта персональных данных (если иное не предусмотрено федеральным законом РФ).