будущее есть!
  • После
  • Конспект
  • Документ недели
  • Бутовский полигон
  • Колонки
  • Pro Science
  • Все рубрики
    После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша
После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша

Конспекты Полит.ру

Смотреть все
Алексей Макаркин — о выборах 1996 года
Апрель 26, 2024
Николай Эппле — о речи Пашиняна по случаю годовщины геноцида армян
Апрель 26, 2024
«Демография упала» — о демографической политике в России
Апрель 26, 2024
Артем Соколов — о технологическом будущем в военных действиях
Апрель 26, 2024
Анатолий Несмиян — о технологическом будущем в военных действиях
Апрель 26, 2024

После

Смотреть все
«После» для майских
Май 7, 2024

Публичные лекции

Смотреть все
Всеволод Емелин в «Клубе»: мои первые книжки
Апрель 29, 2024
Вернуться к публикациям
химия Сколтех наука исследования
Апрель 18, 2024
Pro Science

Молекулы для хранения водорода

Молекулы для хранения водорода
ps_Raisins_in_a_Hydrogen_Pie_02_(2)
В исследовании рассматриваются насыщенные водородом соединения. которые образуются при очень высоком давлении из водорода (двухатомные молекулы — «гантели») и рубидия либо цезия. Стронций был героем одной из предыдущих работ научной группы. Источник: Дмит
Исследователи из Сколтеха, Института кристаллографии имени А. В. Шубникова РАН и научных центров Китая, Японии и Италии нашли материал, способный вбирать и удерживать в своем объеме в четыре раза больше водорода, чем другие известные вещества для «химического хранения» этого экологичного топлива. В будущем на водороде могли бы работать промышленное производство и транспорт, а водородные накопители уже внедряются для балансирования нагрузки на электросеть. Сложность в том, что водород плохо поддается хранению — в решение этой проблемы сделали вклад авторы опубликованного в журнале Advanced Energy Materials исследования.

Ожидается, что водород будет играть важную роль в низкоуглеродной экономике будущего. Его можно производить с помощью возобновляемых источников энергии и использовать для выработки электроэнергии и тепла в топливных элементах, двигателях, промышленных печах. Это экологичное топливо пригодится на производстве стали, стекла и химикатов, в контейнерных перевозках и в целом для транспорта, а также для сглаживания колебаний спроса и предложения в сети электроснабжения, в том числе в контексте непредсказуемой ветровой и солнечной генерации.

Одно из главных препятствий для широкого применения водорода в энергетике — отсутствие безопасной, экологичной и экономичной технологии хранения этого чрезвычайно легкого (в 14 раз легче воздуха), химически активного, взрывоопасного и склонного к утечкам газа. При накоплении и транспортировке в газовых баллонах, цистернах, криогенных резервуарах и трубопроводах водород сжимают или сжижают; можно даже превратить его в твердое тело — кристалл из молекул H2. Но возникает ряд трудностей.

Во-первых, такого рода манипуляции с водородом крайне энергозатратны: на сжатие и охлаждение тратится около 20–40 % той энергии, которую в итоге можно будет получить от самого топлива. Во-вторых, даже в уплотненном виде водород содержит примерно вдвое меньше энергии на единицу объема, чем природный газ — сжатый или сжиженный, — хотя энергии на единицу массы в водороде намного больше, чем в любом другом химическом топливе. Это особенно неудобно для транспорта. В-третьих, у водорода самые маленькие молекулы — они легко утекают из контейнеров и даже проникают внутрь металлических стенок (диффузия), делая их хрупкими и вызывая образование трещин.

«Альтернатива — химические накопители, — объясняет выпускник аспирантуры Сколтеха по программе "Науки о материалах" Дмитрий Семенок, один из первых авторов исследования. — Некоторые материалы, например сплавы магния и никеля или циркония и ванадия, могут удерживать водород в пустотах между атомами металлов, которые образуют кристаллическую решетку. В такие "аккумуляторы" можно упаковать достаточно много водорода, безопасно его хранить и высвобождать по мере надобности путем нагрева. Но, хотя имеющиеся сплавы можно продолжать совершенствовать с точки зрения условий закачки и извлечения водорода, а также ресурса циклов зарядки и разрядки, существует достаточно жесткое ограничение главного показателя: в эти сплавы вряд ли удастся втиснуть больше двух-трех атомов водорода на атом металла».

«В синтезированных нами соединениях — гептагидриде цезия CsH7 и нонагидриде рубидия RbH9 — помещается аж семь или девять атомов водорода соответственно на один атом металла. Причем мы рассчитываем, что это будут первые столь насыщенные водородом материалы, устойчивые при атмосферном давлении, хотя для строгого подтверждения нужны дополнительные эксперименты. Как бы то ни было, доля атомов водорода в этих веществах выше, чем в любых известных гидридах, существующих при нормальных давлениях, — вдвое выше, чем в метане CH4», — добавил Семенок.

Научный руководитель исследования, профессор Сколтеха Артём Оганов, заведующий Лабораторией дизайна материалов, рассказал, как устроен эксперимент: «Богатое водородом твердое вещество боразан (боран аммиака NH3BH3) реагирует с цезием или рубидием. Получается соль — амидоборан цезия или рубидия. При нагревании соль разлагается на моногидрид цезия или рубидия и большое количество водорода. Поскольку эксперимент проходит в ячейке с алмазными наковальнями, которые обеспечивают давление в 100 тыс. атмосфер, выделившийся водород втискивается в пустоты кристаллической решетки низших гидридов с образованием полигидридов: гептагидрида цезия и двух вариантов нонагидрида рубидия с разной топологией кристаллической структуры».

По словам исследователей, цезию и рубидию с их большими атомными радиусами «предначертано» участвовать в водородной аккумуляции, ведь объем пустот в кристаллической решетке из-за этого особенно велик. Образование в ходе эксперимента полигидридов этих металлов согласуется с предсказаниями компьютерных моделей и расчетами на основе фундаментальных законов физики, а также подтверждается рентгеноструктурным анализом, рамановской спектроскопией и, наконец, спектроскопией отражения и пропускания в алмазных камерах, задействовать которую стало возможным благодаря вкладу в исследование научного сотрудника Лаборатории гибридной фотоники Сколтеха Дениса Санникова.

Коллектив собирается повторить эксперимент в большем масштабе с использованием гидравлического пресса. Таким образом ученые хотят получить полигидриды цезия и рубидия в большем количестве и при меньшем давлении (10 тыс. атмосфер), а также убедиться, что эти соединения, в отличие от других известных полигидридов, останутся устойчивы при снижении давления вплоть до атмосферного.
читайте также
Pro Science
Эксперименты империи. Адат, шариат и производство знаний в Казахской степи
Май 15, 2024
Pro Science
Раскопки в Телль Ваджеф
Май 15, 2024
ЗАГРУЗИТЬ ЕЩЕ

Бутовский полигон

Смотреть все
Начальник жандармов
Май 6, 2024

Человек дня

Смотреть все
Человек дня: Александр Белявский
Май 6, 2024
Публичные лекции

Лев Рубинштейн в «Клубе»

Pro Science

Мальчики поют для девочек

Колонки

«Год рождения»: обыкновенное чудо

Публичные лекции

Игорь Шумов в «Клубе»: миграция и литература

Pro Science

Инфракрасные полярные сияния на Уране

Страна

«Россия – административно-территориальный монстр» — лекция географа Бориса Родомана

Страна

Сколько субъектов нужно Федерации? Статья Бориса Родомана

Pro Science

Эксперименты империи. Адат, шариат и производство знаний в Казахской степи

О проекте Авторы Биографии
Свидетельство о регистрации средства массовой информации Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством Российской Федерации по делам печати, телерадиовещания и средств массовой информации.

© Полит.ру, 1998–2024.

Политика конфиденциальности
Политика в отношении обработки персональных данных ООО «ПОЛИТ.РУ»

В соответствии с подпунктом 2 статьи 3 Федерального закона от 27 июля 2006 г. № 152-ФЗ «О персональных данных» ООО «ПОЛИТ.РУ» является оператором, т.е. юридическим лицом, самостоятельно организующим и (или) осуществляющим обработку персональных данных, а также определяющим цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.

ООО «ПОЛИТ.РУ» осуществляет обработку персональных данных и использование cookie-файлов посетителей сайта https://polit.ru/

Мы обеспечиваем конфиденциальность персональных данных и применяем все необходимые организационные и технические меры по их защите.

Мы осуществляем обработку персональных данных с использованием средств автоматизации и без их использования, выполняя требования к автоматизированной и неавтоматизированной обработке персональных данных, предусмотренные Федеральным законом от 27 июля 2006 г. № 152-ФЗ «О персональных данных» и принятыми в соответствии с ним нормативными правовыми актами.

ООО «ПОЛИТ.РУ» не раскрывает третьим лицам и не распространяет персональные данные без согласия субъекта персональных данных (если иное не предусмотрено федеральным законом РФ).