будущее есть!
  • После
  • Конспект
  • Документ недели
  • Бутовский полигон
  • Колонки
  • Pro Science
  • Все рубрики
    После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша
После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша

Конспекты Полит.ру

Смотреть все
Алексей Макаркин — о выборах 1996 года
Апрель 26, 2024
Николай Эппле — о речи Пашиняна по случаю годовщины геноцида армян
Апрель 26, 2024
«Демография упала» — о демографической политике в России
Апрель 26, 2024
Артем Соколов — о технологическом будущем в военных действиях
Апрель 26, 2024
Анатолий Несмиян — о технологическом будущем в военных действиях
Апрель 26, 2024

После

Смотреть все
«После» для майских
Май 7, 2024

Публичные лекции

Смотреть все
Всеволод Емелин в «Клубе»: мои первые книжки
Апрель 29, 2024
Вернуться к публикациям
туберкулез медицина бактерии наука исследования микробиология
Март 7, 2024
Pro Science

Желтый свет против туберкулеза

Желтый свет против туберкулеза
ps_myco_tub
Бактерии Mycobacterium tuberculosis внутри клеток макрофагов. Белая стрелка указывает на микобактерию с красным свечением порфиринов. Источник: M. O. Shleeva et al./Scientific Reports. 2024
Ученые предложили избавляться от лекарственно-устойчивых и «спящих» форм микобактерий — возбудителей туберкулеза — с помощью желтого света, сообщает пресс-служба Российского научного фонда.

Неактивные патогены нечувствительны ко всем известным антибиотикам, а потому часто остаются в легких пациентов даже после лечения и вызывают рецидивы заболевания. Эксперименты продемонстрировали, что новый подход позволяет уничтожить 99,99 % бактерий всего за 30 минут облучения светом с длиной волны 565 нанометров.

Туберкулез — инфекционное заболевание, вызываемое бактерией Mycobacterium tuberculosis, — очень плохо поддается лечению из-за того, что его возбудитель стал устойчивым ко многим современным антибиотикам. Россия занимает третье место в мире по количеству больных лекарственно-устойчивым туберкулезом. Более того, даже после успешного на первый взгляд лечения в легких человека могут остаться неактивные — так называемые «спящие» — формы микобактерий. По данным ВОЗ, Mycobacterium tuberculosis может в таком виде бессимптомно сохраняться у одной четверти пациентов в течение многих лет, вызывая латентную, то есть скрытую форму туберкулеза, которая в 5–10 % случаев переходит в активную фазу болезни. Опасность латентного туберкулеза возросла в последние годы в связи с тем, что заражение COVID-19 нередко приводит к «пробуждению» микобактерий, которые в значительной доле случаев оказываются лекарственно-устойчивыми. Поэтому ученые ищут способы бороться с покоящимися и не чувствительными к антибиотикам формами Mycobacterium tuberculosis.

Ученые из Федерального исследовательского центра «Фундаментальные основы биотехнологии» РАН (Москва) и Центрального научно-исследовательского института туберкулеза (Москва) выяснили, что для этой цели хорошо подходит облучение бактерий желтым светом, имеющим длину волны 565 нанометров. Дело в том, что покоящиеся клетки Mycobacterium tuberculosis синтезируют и накапливают большое количество порфиринов — азотсодержащих пигментов, наличие которых было доказано современными методами молекулярного анализа. Эти соединения высокочувствительны к свету и при его воздействии генерируют активные формы кислорода — частицы, способные повреждать белки и ДНК. Поэтому авторы предположили, что порфирины, которые накапливаются в клетках микобактерий, можно использовать в качестве молекулярного «оружия» против самих бактерий.

Чтобы проверить эту гипотезу, исследователи в лабораторных условиях получили покоящиеся формы Mycobacterium tuberculosis и измерили количество порфиринов в их клетках. Оказалось, что уровень этих молекул в шесть раз превышал показатели, характерные для активных бактерий. Когда же ученые добавили в среду, на которой росли микобактерии, 5-аминолевулиновую кислоту — вещество-предшественник порфиринов, — количество порфиринов в покоящихся клетках возросло в 85 раз.

Затем авторы получили экстракты из клеток Mycobacterium tuberculosis и определили длины волн, при которых раствор поглощает максимальное количество света. Среди нескольких выявленных максимумов оказались длины волн, на которых поглощают свет порфирины. Ученые выбрали значение 565 нанометров, соответствующее наиболее чувствительному к свету цинк-порфирину, и облучили светом с такой длиной волны покоящиеся культуры микобактерий.

В результате 30-минутного эксперимента 99,99 % патогенов погибло, чего невозможно достичь применением любых антибиотиков, даже в случае активно растущих микобактерий. Авторы объясняют это тем, что вырабатываемые порфиринами на свету активные формы кислорода нарушили у бактерий дыхательную цепь — комплекс белков, отвечающих за обеспечение клеток энергией. При этом такое же воздействие на активные формы бактерий не дало эффекта, поскольку они практически не накапливают порфирины. Однако авторы разработали подход, с помощью которого можно стимулировать накопление порфиринов как в спящих, так и в активно размножающихся микобактериях. Для этого ученые предложили предварительно обрабатывать клетки 5-аминолевулиновой кислотой. Это вещество безопасно для человека и уже используется в медицине при диагностике рака, поэтому в рамках предлагаемого подхода пациенты смогут его принимать, просто запивая водой.

Кроме того, чтобы смоделировать реальные условия заболевания, авторы поставили такой же эксперимент на активно размножающихся и «спящих» бактериях, которых поглотили макрофаги — клетки иммунной системы, участвующие в защите человеческого организма от болезнетворных микроорганизмов, в том числе возбудителя туберкулеза. При выдерживании макрофагов с микобактериями в среде с 5-аминолевулиновой кислотой такие «съеденные», но не разрушенные макрофагами микобактерии оказались еще более чувствительными к свету, чем свободно растущие микобактерии — как «спящие», так и активные. Это объясняется тем, что внутриклеточная среда макрофагов неблагоприятна для бактерий и снижает их устойчивость к дополнительным разрушающим воздействиям.

Разработанный подход можно будет применять в клинической практике для лечения туберкулеза, доставляя свет нужной длины волны в очаги заболевания с помощью световодов. В частности, для этой цели можно будет использовать волоконно-оптический бронхоскоп — гибкую тонкую трубку, которая практически безболезненно для пациента позволяет врачу рассмотреть очаги туберкулеза в легких. В то же время интересным может оказаться подход, основанный на использовании гибких органических светоизлучающих диодов в качестве источников света.

«Эксперименты доказали, что эффективность предложенного подхода достигает 99,99 %, поэтому потенциально его можно будет использовать в клинической практике для уничтожения как неактивных очагов туберкулеза в легких человека, так и возбудителя туберкулеза с множественной лекарственной устойчивостью. Однако нам еще предстоит проверить этот метод на лабораторных животных», — рассказывает руководитель проекта Маргарита Шлеева, заведующая лабораторией биохимии стрессов микроорганизмов ФИЦ «Фундаментальные основы биотехнологии» РАН.

Результаты исследования, поддержанного грантом Российского научного фонда, опубликованы в журнале Scientific Reports.
читайте также
Pro Science
Эксперименты империи. Адат, шариат и производство знаний в Казахской степи
Май 15, 2024
Pro Science
Раскопки в Телль Ваджеф
Май 15, 2024
ЗАГРУЗИТЬ ЕЩЕ

Бутовский полигон

Смотреть все
Начальник жандармов
Май 6, 2024

Человек дня

Смотреть все
Человек дня: Александр Белявский
Май 6, 2024
Публичные лекции

Лев Рубинштейн в «Клубе»

Pro Science

Мальчики поют для девочек

Колонки

«Год рождения»: обыкновенное чудо

Публичные лекции

Игорь Шумов в «Клубе»: миграция и литература

Pro Science

Инфракрасные полярные сияния на Уране

Страна

«Россия – административно-территориальный монстр» — лекция географа Бориса Родомана

Страна

Сколько субъектов нужно Федерации? Статья Бориса Родомана

Pro Science

Эксперименты империи. Адат, шариат и производство знаний в Казахской степи

О проекте Авторы Биографии
Свидетельство о регистрации средства массовой информации Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством Российской Федерации по делам печати, телерадиовещания и средств массовой информации.

© Полит.ру, 1998–2024.

Политика конфиденциальности
Политика в отношении обработки персональных данных ООО «ПОЛИТ.РУ»

В соответствии с подпунктом 2 статьи 3 Федерального закона от 27 июля 2006 г. № 152-ФЗ «О персональных данных» ООО «ПОЛИТ.РУ» является оператором, т.е. юридическим лицом, самостоятельно организующим и (или) осуществляющим обработку персональных данных, а также определяющим цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.

ООО «ПОЛИТ.РУ» осуществляет обработку персональных данных и использование cookie-файлов посетителей сайта https://polit.ru/

Мы обеспечиваем конфиденциальность персональных данных и применяем все необходимые организационные и технические меры по их защите.

Мы осуществляем обработку персональных данных с использованием средств автоматизации и без их использования, выполняя требования к автоматизированной и неавтоматизированной обработке персональных данных, предусмотренные Федеральным законом от 27 июля 2006 г. № 152-ФЗ «О персональных данных» и принятыми в соответствии с ним нормативными правовыми актами.

ООО «ПОЛИТ.РУ» не раскрывает третьим лицам и не распространяет персональные данные без согласия субъекта персональных данных (если иное не предусмотрено федеральным законом РФ).