будущее есть!
  • После
  • Конспект
  • Документ недели
  • Бутовский полигон
  • Колонки
  • Pro Science
  • Все рубрики
    После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша
После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша

Конспекты Полит.ру

Смотреть все
Алексей Макаркин — о выборах 1996 года
Апрель 26, 2024
Николай Эппле — о речи Пашиняна по случаю годовщины геноцида армян
Апрель 26, 2024
«Демография упала» — о демографической политике в России
Апрель 26, 2024
Артем Соколов — о технологическом будущем в военных действиях
Апрель 26, 2024
Анатолий Несмиян — о технологическом будущем в военных действиях
Апрель 26, 2024

После

Смотреть все
«После» для майских
Май 7, 2024

Публичные лекции

Смотреть все
Всеволод Емелин в «Клубе»: мои первые книжки
Апрель 29, 2024
Вернуться к публикациям
исследования материаловедение наука сверхпроводники химия
Июль 11, 2025
Pro Science

Странный гидрид олова

Странный гидрид олова
ps_SnH4_ru_0
Молекулярный гидрид олова. Источник: Дмитрий Семенок

Исследователи из Сколтеха, Института кристаллографии РАН и Центра высоких давлений HPSTAR в Пекине продолжают работу над проектом по изучению сверхпроводимости гидридов — соединений металлов с водородом, образующихся при высоком давлении. Такие соединения, как ожидают ученые, смогут работать при более высоких температурах, чем купратные сверхпроводники. Совместно с коллегами из других ведущих научных институтов России, Китая, Германии и США исследователи опубликовали статью в журнале Advanced Science, в которой представили ранее неизвестные гидриды олова. С ее содержанием ознакомила читателей пресс-служба Сколтеха.

Сверхпроводимость — это свойство материала проводить электричество без потерь и сопротивления. Сверхпроводники существенно упрощают передачу электрического тока и используются в новых технологических разработках — например, в больших магнитах или квантовых компьютерах, которые в миллионы раз быстрее решают задачи, практически недоступные для обычных компьютеров. Однако пока такие технологии дороги из-за того, что существующие сверхпроводники могут работать только при очень низких температурах — в основном ниже минус 196 градусов Цельсия.

«Тема гидридной высокотемпературной сверхпроводимости становится всё более популярной из-за открытия новых материалов с рекордными критическими температурами. В такой ситуации очень важно понимать и изучать физические механизмы проводимости и сверхпроводимости в гидридах, а также структуру новых материалов, иначе можно получить некорректные данные. В наших исследованиях эта задача успешно решается», — рассказывает соавтор работы, старший преподаватель в Проектном центре по энергопереходу Александр Квашнин.  

Группа ученых из Сколтеха и Центра высоких давлений HPSTAR в Пекине проводит эксперименты, чтобы приблизиться к достижению комнатной температуры сверхпроводимости. «Ранее мы исследовали сверхпроводящие гидриды тория, иттрия, церия, лантана-иттрия и лантана-церия при давлении до двух миллионов атмосфер. Максимальная температура, которой нам удалось достичь, была около 253 градусов Кельвина (приблизительно минус 20 градусов Цельсия)», — рассказывает один из авторов исследования и выпускник Сколтеха, научный сотрудник в Центре высоких давлений HPSTAR Дмитрий Семенок.

В новой статье ученые изучили химическое взаимодействие между оловом (Sn) и водородом (H2) под давлением 180–240 гигапаскалей с помощью электротранспортных измерений и синхротронной рентгеновской монокристальной и порошковой дифракции. 

«Для экспериментов мы используем алмазные камеры высокого давления с двумя алмазными наковальнями, которые с усилием прижимаются друг к другу. Между ними помещается небольшой образец исследуемого материала. В рамках этой работы мы загружали в камеру жидкий станнан — молекулярный гидрид олова SnH4. При сдавливании алмазов в области диаметром 50 микрометров развивается огромное давление — до 2–2,5 миллиона атмосфер. В результате свойства вещества изменяются и образуются новые соединения олова с водородом. Прозрачная жидкость SnH4 превращается в полупроводник, потом становится металлом, а затем — сверхпроводником с критической температурой в 72 градуса Кельвина. Электротранспортные свойства мы исследовали, используя металлические контакты на алмазе и пропуская электрический ток через образец. Структуру новых гидридов олова мы изучали с использованием монокристальной и порошковой синхротронной дифракции», — описывает процедуру эксперимента Дмитрий Семенок.

По словам исследователей, SnH4 под давлением проявляет необычные свойства: электрическое и магнитное сопротивление этого гидрида в несверхпроводящем состоянии практически линейно зависят от температуры и приложенного магнитного поля соответственно. Верхнее критическое магнитное поле также линейно зависит от температуры, отклоняясь от общепринятых моделей. Поведение тетрагидрида олова оказывается очень похожим на поведение купратных сверхпроводников, которые принято характеризовать как «странные», нефермижидкостные, металлы.


Схема эксперимента. Автор: Дмитрий Семенок

«Странные» металлы проводят электричество не так, как обычные. На рассеяние электронов и электрическое сопротивление в них влияют не только тепловые колебания решетки и электроны, но и другие факторы и экзотические частицы, например сверхпроводящие флуктуации, магноны, волны спиновой и зарядовой плотности. 

«Наша работа является одним из первых связующих звеньев между богатой на квантовые эффекты областью купратной сверхпроводимости и гидридной сверхпроводимостью при высоких давлениях. При этом другие сверхпроводящие гидриды с большой практической значимостью (например, супергидрид лантана LaH10) также могут оказаться "странными" металлами. Детальное исследование их свойств еще впереди», — поясняет Дмитрий Семенок. 

Ученые планируют продолжать исследования физических свойств сверхпроводящих гидридов металлов с акцентом на квантовые эффекты в них при сверхнизких температурах. Особенный интерес у группы исследователей вызывают гидриды церия, CeH9 и CeH10, большие образцы которых могут быть получены при значительно более низком давлении — около миллиона атмосфер.

читайте также
Pro Science
Эксперименты империи. Адат, шариат и производство знаний в Казахской степи
Май 15, 2024
Pro Science
Раскопки в Телль Ваджеф
Май 15, 2024
ЗАГРУЗИТЬ ЕЩЕ

Бутовский полигон

Смотреть все
Начальник жандармов
Май 6, 2024

Человек дня

Смотреть все
Человек дня: Александр Белявский
Май 6, 2024
Публичные лекции

Лев Рубинштейн в «Клубе»

Pro Science

Мальчики поют для девочек

Колонки

«Год рождения»: обыкновенное чудо

Публичные лекции

Игорь Шумов в «Клубе»: миграция и литература

Pro Science

Инфракрасные полярные сияния на Уране

Страна

«Россия – административно-территориальный монстр» — лекция географа Бориса Родомана

Страна

Сколько субъектов нужно Федерации? Статья Бориса Родомана

Pro Science

Эксперименты империи. Адат, шариат и производство знаний в Казахской степи

О проекте Авторы Биографии
Свидетельство о регистрации средства массовой информации Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством Российской Федерации по делам печати, телерадиовещания и средств массовой информации.

© Полит.ру, 1998–2024.

Политика конфиденциальности
Политика в отношении обработки персональных данных ООО «ПОЛИТ.РУ»

В соответствии с подпунктом 2 статьи 3 Федерального закона от 27 июля 2006 г. № 152-ФЗ «О персональных данных» ООО «ПОЛИТ.РУ» является оператором, т.е. юридическим лицом, самостоятельно организующим и (или) осуществляющим обработку персональных данных, а также определяющим цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.

ООО «ПОЛИТ.РУ» осуществляет обработку персональных данных и использование cookie-файлов посетителей сайта https://polit.ru/

Мы обеспечиваем конфиденциальность персональных данных и применяем все необходимые организационные и технические меры по их защите.

Мы осуществляем обработку персональных данных с использованием средств автоматизации и без их использования, выполняя требования к автоматизированной и неавтоматизированной обработке персональных данных, предусмотренные Федеральным законом от 27 июля 2006 г. № 152-ФЗ «О персональных данных» и принятыми в соответствии с ним нормативными правовыми актами.

ООО «ПОЛИТ.РУ» не раскрывает третьим лицам и не распространяет персональные данные без согласия субъекта персональных данных (если иное не предусмотрено федеральным законом РФ).