5 августа 2020, среда, 07:47
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.ДзенОдноклассники

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

Нейросеть поможет вырастить сетчатку из стволовых клеток

Стволовые клетки человека
Стволовые клетки человека
Wikimedia Commons

Ученые из Московского физико-технического института совместно с коллегами из Института системного программирования и Института глазных исследований им. Чарльза Шепенса Гарвардской школы медицины разработали нейросеть, способную распознавать ткани формирующейся сетчатки еще до ее окончательной дифференцировки. Результаты работы опубликованы в журнале Frontiers in Cellular Neuroscience, кратко о них рассказывается в сообщении пресс-службы МФТИ.

Выращивание тканей организма из стволовых клеток в наши дни производят в трехмерных клеточных агрегатах — органоидах. Данная технология уже показала свою эффективность для исследования развития сетчатки, мозга, внутреннего уха, кишечника, поджелудочной железы и многих других тканей. Культура стволовых клеток постепенно дифференцируется, давая клетки различных типов. Благодаря тому, что процесс дифференцировки по данной технологии основывается на естественных механизмах развития, получаемая ткань обладает значительным сходством с естественным органом.

Природа некоторых этапов дифференцировки клеток имеет случайный характер, что приводит к значительному изменению количества клеток с определенной функцией даже среди искусственных органов в одной партии, не говоря о разных клеточных линиях. Это значит, что для воспроизводимости экспериментов и, как следствие, для наибольшей надежности в клинических применениях при каждой дифференцировке необходимо уметь определять, какие клетки специализировались, а какие — нет.

Для определения дифференцированных клеток при работе с тканями специалисты используют флуоресцентные белки — ген светящегося белка добавляют в ДНК клеток, в результате чего последние начинают его синтезировать, когда проходят нужную стадию развития. Но этот метод не подходит для производства клеток для трансплантации или моделирования наследственных заболеваний генетической природы. Поэтому ученые в данной работе предложили альтернативный подход для анализа — на основании структуры самой ткани. Для решения проблемы отбора лучших тканей сетчатки для дальнейшей трансплантации, скрининга лекарственных препаратов или моделирования заболеваний ученые решили использовать методы нейронных сетей и искусственного интеллекта.

Авторы статьи обучили нейронную сеть находить ткани развивающейся сетчатки на основании фотографий с простого светового микроскопа. Сначала они попросили экспертов идентифицировать на 1200 изображениях дифференцированные клетки при помощи точного метода с использованием флуоресцентного репортера. Нейросеть обучили на 750 изображениях, еще 150 были использованы для валидации и 250 — для тестов. После проверки всех предсказаний оказалось, что люди определяли дифференцированные клетки с точностью около 67 %, в то время как нейросеть имела точность 84 %.

«Наши результаты показывают, что критерии отбора тканей сетчатки на ранней стадии субъективны и зависят от эксперта, который принимает решение. При этом морфология (то есть структура) самой ткани даже на очень ранней стадии позволяет прогнозировать дифференцировку сетчатки. И программа, в отличие от человека, может извлечь эту информацию! С учетом того, что этот подход не требует сложных изображений, флуоресцентных репортеров или красителей для анализа, его легко внедрить. Это позволяет сделать еще один шаг в сторону создания клеточных терапий для таких заболеваний сетчатки, как глаукома и макулярная дистрофия, которые сейчас практически неминуемо приводят к слепоте. Кроме того, этот подход может быть перенесен не только на другие клеточные линии, но и на человеческие искусственные органы», — объясняет сотрудник лаборатории терапии орфанных заболеваний МФТИ Евгений Кегелес.

Обсудите в соцсетях

«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность антропогенез археология архитектура астероиды астрофизика бактерии бедность библиотеки биоинформатика биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера вакцинация викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты климатология клонирование комары комета кометы компаративистика космос культура культурология лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы природа психиатрия психоанализ психология психофизиология птицы путешествие пчелы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экзопланеты экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Алексей Ананьев Дмитрий Козак Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад альтернативная энергетика аутизм биология бозон Хиггса вымирающие виды глобальное потепление грипп защита растений инвазивные виды информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция физическая антропология финансовый рынок черные дыры эволюция эволюция звезд эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PayPal PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика Top.Mail.Ru
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2020.