Издательство «Альпина Паблишер» представляет книгу Джордана Морроу «Как вытащить из данных максимум. Навыки аналитики для неспециалистов» (перевод М. Кульнева).
Дата-грамотность, то есть способность ориентироваться в мире данных, — ключевой навык сегодня. Ежедневно в соцсетях публикуются миллиарды сообщений, электронные почтовые ящики по всей планете гудят от писем, а каждый подключенный к интернету автомобиль производит терабайты данных, не говоря уже об онлайн-магазинах, платежных системах и государственных цифровых сервисах. Однако работать с данными, анализировать их и использовать их для бизнеса по-прежнему умеет меньшинство, а специалистов катастрофически не хватает. Для тех, кто хочет научиться говорить на языке данных уверенно, признанный эксперт в области дата-грамотности Джордан Морроу и написал свою книгу. Это практическое руководство позволит даже неспециалисту освоить четыре базовых уровня аналитики и узнать, как принимать эффективные решения на основе данных, чтобы извлекать максимум из информации и быть успешными в быстро меняющемся цифровом мире.
Предлагаем прочитать фрагмент книги.
Примеры использования четырех уровней аналитических методов в реальной жизни
Разбор реальных примеров использования всех четырех уровней аналитики поможет нам и укрепить фундамент, и обрисовать более широкую картину. Каждый из уровней опирается на предыдущий, и сейчас мы изучим, как они взаимодействуют. Кроме того, примеры помогут нам понять, как распределяются роли сотрудников в системе анализа.
Уровень 1: дескриптивные аналитические методы
Каждый из этих примеров можно связать с другими. Описательная аналитика — это привычная часть мира бизнеса, все мы с ней регулярно сталкиваемся:
Кто из сотрудников участвует в дескриптивном анализе? Все! Топ-менеджеры рассматривают отчеты, бизнес-аналитики и дата-аналитики их составляют, специалисты по обработке данных используют свои методы, конечные пользователи читают и интерпретируют сводки и т. д. У каждого своя функция.
Уровень 2: диагностические аналитические методы
Помните, что любой пример описательного анализа — это всего лишь первый шаг. Дескриптивные методы помогают понять, что случилось в прошлом, а диагностический анализ дает возможность разобраться, почему это случилось.
Кто занимается диагностическим анализом? Опять-таки все! Все, кто хочет что-либо продиагностировать: например, топ-менеджеры и сотрудники, ответственные за принятие решений, задают вопросы аналитикам. Дата-аналитики роются в информации, представленной в таблицах и отчетах. Специалисты по обработке данных строят модели, чтобы понять, что случилось. Сотрудники разных отделов компании тоже должны быть готовы предоставить свои знания и профессиональный опыт. Словом, любой сотрудник может принять участие в диагностике случившегося или происходящего.
Уровень 3: предиктивные аналитические методы
Предиктивные методы — это более продвинутый уровень аналитики. Предсказательный анализ позволяет понять, что произойдет в будущем.
Кто может участвовать в предсказательном анализе? Правильно: все! Конечно, специалисты по обработке данных и другие «технические» сотрудники играют важную роль, так как именно они строят прогнозы и модели. Когда руководителям компании нужно предсказать, что произойдет в результате тех или иных действий, они должны как следует донести это до специалистов, которые заняты прогнозами. Различные отделы компании должны делиться своими планами, опытом и всем остальным, чтобы прогнозы были более точными.
Уровень 4: прескриптивные аналитические методы
Прескриптивный анализ подразумевает следующее: технология «подсказывает» организации, что делать.
Кто участвует в директивном анализе? Вы и сами знаете ответ: все! Здесь, как и на предсказательном уровне, большую роль играют технические специалисты, но для дела нужен каждый сотрудник — лишь бы он умел задавать правильные вопросы машине, а затем применять результаты ее работы.