будущее есть!
  • После
  • Конспект
  • Документ недели
  • Бутовский полигон
  • Колонки
  • Pro Science
  • Все рубрики
    После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша
После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша

Конспекты Полит.ру

Смотреть все
Алексей Макаркин — о выборах 1996 года
Апрель 26, 2024
Николай Эппле — о речи Пашиняна по случаю годовщины геноцида армян
Апрель 26, 2024
«Демография упала» — о демографической политике в России
Апрель 26, 2024
Артем Соколов — о технологическом будущем в военных действиях
Апрель 26, 2024
Анатолий Несмиян — о технологическом будущем в военных действиях
Апрель 26, 2024

После

Смотреть все
«После» для майских
Май 7, 2024

Публичные лекции

Смотреть все
Всеволод Емелин в «Клубе»: мои первые книжки
Апрель 29, 2024
Вернуться к публикациям
нейробиология
Июль 6, 2025
Pro Science

Коммуникация нейронов

Коммуникация нейронов
synapses

Сотрудники Института высшей нервной деятельности и нейрофизиологии РАН совместно с коллегами из Института биоорганической химии РАН и Университета Сассекса выявили новый способ регуляции электрической активности нейронов с помощью располагающихся в синапсах нейрона калиевых ионных каналов BK-типа, чувствительных к кальцию. Опубликованные в журнале Science Advances результаты раскрывают механизмы, с помощью которых нейронная сеть без искажений передает высокочастотные сигналы, необходимые для точной детекции совпадений во времени.

Ученых давно интересовало, какие особенные свойства нейронов позволяют им генерировать и поддерживать сверхбыстрые электрические разряды до 200 раз в секунду и выше. За создание концепции, описывающей возникновение нервного импульса путем активации ионных каналов в 1963 году Алан Ходжкин и Эндрю Хаксли получили Нобелевскую премию по медицине.

Потенциал-активируемые ионные каналы являются белками, пропускающими заряженные частицы (ионы) через мембрану, в результате чего генерируются электрические разряды, с помощью которых нейроны «разговаривают» между собой и передают команды на сокращение мышц. При этом, электрическая активность мембраны нейрона не затихает сама собой, и чтобы всплеск потенциала прекратился, в конце каждого нервного импульса необходима активация особого типа каналов, пропускающих ионы калия и возвращающих заряд мембраны нейрона к его исходному значению покоя. От работы калиевых каналов зависит, насколько быстро мембрана нейрона восстановится и будет готова снова генерировать нервный импульс, а значит, и с какой частотой нейрон сможет передавать сигналы по своему аксону к другим нейронам сети.

 

В нынешнем исследовании ученых из Института высшей нервной деятельности и нейрофизиологии РАН, Института биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН и Университета Сассекса особенно заинтересовали нейрональные калиевые каналы BK-типа, чувствительные к внутриклеточному кальцию, и поэтому активирующиеся не сразу, а только после одного или нескольких предшествующих электрических импульсов, когда в клетку уже начинает поступать кальций. Это помогает нейронам поддерживать высокую калиевую проводимость даже при серийных разрядах, когда основной тип калиевых каналов, Kv1, уже значительно инактивирован. Особенное положение BK-каналов в аксоне и синаптических бутонах позволяет им «чувствовать» кальциевый сигнал в синапсах - запускаемых внутриклеточным кальцием «межнейронных передатчиках», с помощью которых нейроны посылают химические сигналы по цепочке друг-другу.

«Мы установили, что активация синаптической передачи нейроном сама по себе видоизменяет будущие электрические разряды в этом нейроне посредством очень быстрой обратной связи, – объясняет Евгений Никитин, руководитель группы биофотоники ИВНД и НФ РАН. – Повышение внутриклеточного кальция в пресинаптическом бутоне и первом перехвате Ранвье вызывает значительное снижение длительности отдельных потенциалов действия в этом нейроне посредством открытия калиевых BK-каналов, чувствительных к кальцию».

Чтобы установить, как внутриклеточный кальций меняет параметры разрядов нейрона, ученые использовали метод фотолитического высвобождения кальция из связанного фоточувствительного соединения, которым предварительно заполняли пирамидный нейрон пятого слоя зрительной коры крысы. Используя сканирующий микроскоп, ученые проецировали лазерный импульс длительностью десятки миллисекунд точно на пресинаптический бутон аксона, вызывая там локальное фотовысвобождение кальция и регистрируя его распространение по аксону с использованием флуоресцентного кальциевого индикатора. Одновременно, ученые регистрировали уменьшение длительности электрических импульсов в нейроне с помощью стеклянного микроэлектрода, внедренного в его мембрану. Эксперименты показали, что искусственно вызванная «кальциевая волна», сравнимая с эффектом от предшествующего электрического импульса, вызывает значительное сужение последующих импульсов в серии.

Однако, как исключить другие объяснения наблюдаемого явления и доказать, что за это ответственны именно калиевые каналы BK-типа? Здесь на помощь ученым пришел высокоселективный пептидный блокатор каналов BK-типа – ибериотоксин, выделенный из яда индийского скорпиона Buthus tamulus. В присутствии ибериотоксина в физиологическом растворе, омывающем нейрон, длительность нервного импульса под воздействием кальция не уменьшалась, тогда как другие блокаторы, в том числе блокаторы Kv1 каналов и синаптической передачи, на наблюдаемое явление не влияли. Ибериотоксин также нарушал структуру постсинаптических потенциалов, вызываемых активацией синапса в следующем нейроне в цепочке, что говорит о важности BK-каналов для поддержания пропорциональности синаптической передачи при серийных высокочастотных разрядах нейросети.

Исследование включало не только нейрофизиологическую, но и молекулярно-биологическую составляющую. В сотрудничестве с коллективом из ИБХ РАН под руководством Всеволода Белоусова было определено точное расположение наиболее близких синаптических бутонов аксона, способных повлиять на генерацию нервного импульса. Ученые трансфецировали нейроны пятого слоя зрительной коры с помощью «генной пушки», используя аминокислотную последовательность, определяющую внутриклеточный транспорт синаптического белка синаптофизина, соединенную с зеленой флуоресцентной («светящейся») меткой SypHer2. Далее, метку SypHer2 наложили с помощью лазерного конфокального сканирующего микроскопа на светящиеся контуры нейрона, подсвеченные с помощью другого флуоресцентного белка, tagRFP, что позволило увидеть расположение бутонов данного нейрона, из которых для дальнейших экспериментов выбрали наиболее близко лежащие к первому перехвату Ранвье.

По словам руководителя подразделения, члена-корреспондента РАН П. М. Балабана, данная работа показывает важность потенциал-чувствительных каналов не только для процесса генерации нервного импульса, но и для динамической настройки его параметров при серийных разрядах. Если бы этого дополнительного механизма регуляции длительности импульса не существовало, синаптическая передача сигналов между нейронами могла бы перейти к неконтролируемой экскалации из-за увеличения длительности импульсов, вызываемого частичной инактивацией основных потенциал-зависимых каналов при высокочастотных разрядах.

читайте также
Pro Science
Эксперименты империи. Адат, шариат и производство знаний в Казахской степи
Май 15, 2024
Pro Science
Раскопки в Телль Ваджеф
Май 15, 2024
ЗАГРУЗИТЬ ЕЩЕ

Бутовский полигон

Смотреть все
Начальник жандармов
Май 6, 2024

Человек дня

Смотреть все
Человек дня: Александр Белявский
Май 6, 2024
Публичные лекции

Лев Рубинштейн в «Клубе»

Pro Science

Мальчики поют для девочек

Колонки

«Год рождения»: обыкновенное чудо

Публичные лекции

Игорь Шумов в «Клубе»: миграция и литература

Pro Science

Инфракрасные полярные сияния на Уране

Страна

«Россия – административно-территориальный монстр» — лекция географа Бориса Родомана

Страна

Сколько субъектов нужно Федерации? Статья Бориса Родомана

Pro Science

Эксперименты империи. Адат, шариат и производство знаний в Казахской степи

О проекте Авторы Биографии
Свидетельство о регистрации средства массовой информации Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством Российской Федерации по делам печати, телерадиовещания и средств массовой информации.

© Полит.ру, 1998–2024.

Политика конфиденциальности
Политика в отношении обработки персональных данных ООО «ПОЛИТ.РУ»

В соответствии с подпунктом 2 статьи 3 Федерального закона от 27 июля 2006 г. № 152-ФЗ «О персональных данных» ООО «ПОЛИТ.РУ» является оператором, т.е. юридическим лицом, самостоятельно организующим и (или) осуществляющим обработку персональных данных, а также определяющим цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.

ООО «ПОЛИТ.РУ» осуществляет обработку персональных данных и использование cookie-файлов посетителей сайта https://polit.ru/

Мы обеспечиваем конфиденциальность персональных данных и применяем все необходимые организационные и технические меры по их защите.

Мы осуществляем обработку персональных данных с использованием средств автоматизации и без их использования, выполняя требования к автоматизированной и неавтоматизированной обработке персональных данных, предусмотренные Федеральным законом от 27 июля 2006 г. № 152-ФЗ «О персональных данных» и принятыми в соответствии с ним нормативными правовыми актами.

ООО «ПОЛИТ.РУ» не раскрывает третьим лицам и не распространяет персональные данные без согласия субъекта персональных данных (если иное не предусмотрено федеральным законом РФ).