будущее есть!
  • После
  • Конспект
  • Документ недели
  • Бутовский полигон
  • Колонки
  • Pro Science
  • Все рубрики
    После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша
После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша

Конспекты Полит.ру

Смотреть все
Алексей Макаркин — о выборах 1996 года
Апрель 26, 2024
Николай Эппле — о речи Пашиняна по случаю годовщины геноцида армян
Апрель 26, 2024
«Демография упала» — о демографической политике в России
Апрель 26, 2024
Артем Соколов — о технологическом будущем в военных действиях
Апрель 26, 2024
Анатолий Несмиян — о технологическом будущем в военных действиях
Апрель 26, 2024

После

Смотреть все
«После» для майских
Май 7, 2024

Публичные лекции

Смотреть все
Всеволод Емелин в «Клубе»: мои первые книжки
Апрель 29, 2024
Вернуться к публикациям
компьютерные технологии
Июль 2, 2025
Pro Science

Новый метод значительно ускорит поиск информации

Новый метод значительно ускорит поиск информации
ps_chicks
Источник: МФТИ

Сотрудниками Московского физико-технического института и Вычислительного центра РАН Андреем Кулунчаковым и Вадимом Стрижовым предложен новый метод автоматического построения ранжирующих моделей, которые используются для обработки запросов от пользователей на поиск информации в коллекциях документов или в интернете. Предлагаемый метод значительно повышает скорость построения моделей. Результаты исследования опубликованы в журнале Expert Systems with Applications, кратко о нем сообщает пресс-релиз МФТИ.

При поиске среди миллионов документов в сети пользователь ожидает в результате получить небольшой полезный список. Документы списка должны быть проранжированы согласно поисковому запросу. Остальные документы для пользователя являются информационным мусором. Цель поисковой системы – найти нужный документ по запросу небольшой длины. Предложенный метод строит ранжирующие модели, позволяющие быстро достигнуть этой цели. Подобные модели являются ядром современных поисковых систем. Ранжирующие модели, предназначенные для быстрого и точного поиска информации, используются во многих областях от спам-фильтров до колл-центров.

Ранжирующая модель строится на основе простейших математических функций. Подобная модель предполагает создание из них сложной функции, которая бы решала поставленную задачу. Работа ученых была направлена на оптимизацию способа построения такой модели. Качество построенной модели определяли в том числе, с помощью живой экспертной оценки адекватности получаемого списка документов.

Одним из способов построения моделей является генетическое программирование. Название оно получило из-за схожести с механизмом естественного отбора в природе. В ходе решения задачи строится множество промежуточных решений – «поколений» моделей, в большей или меньшей степени похожих на искомую модель высокого качества, максимально соответствующую запросу. Алгоритм отсеивает модели низкого качества путем «естественного отбора» и на основе оставшихся создает более подходящие. Лучшие «особи» имеют большую вероятность быть включенными в следующие поколения. Сменяя множество поколений, алгоритм приближается к оптимальному решению.

К сожалению, так происходит лишь в теории. На практике число моделей растет чрезвычайно быстро с ростом сложности. Для перебора моделей, состоящих всего лишь из восьми функций, вычисления занимают не менее суток. При этом следует перебрать все варианты, из которых в будущем может эволюционировать наилучшее решение. Андрей Кулунчаков и Вадим Стрижов в рамках своего исследования создали новый подход к порождению  ранжирующих моделей для поиска документов в больших коллекциях, не имеющих этих недостатков. Также исследователи решили проблему «стагнации».  Когда в сменяющих друг друга «поколениях» модели  структурно похожи и их «скрещивание» не дает существенно новых результатов, происходит «стагнация», или «застой». В таком случае вероятность появления качественной модели существенно снижается. Для того, чтобы избежать стагнации, в поколение добавляются новые модели с целью повышения разнообразия.

Чтобы показать, что созданный метод получает модели, превосходящие по качеству  современные альтернативы, авторы поставили численный эксперимент. Были использованы базы данных Национального института стандартов и технологий США, предназначенные для анализа и сравнения подобных систем. Они состояли из двух миллионов документов и двухсот тысяч запросов. Эксперимент показал, что полученные модели имеют более высокое качество ранжирования, согласно принятому критерию МАР – Mean Average Precision (популярная мера эффективности поиска информации). Сам же метод позволяет получить модель высокого качества за существенно меньшее время.

читайте также
Pro Science
Эксперименты империи. Адат, шариат и производство знаний в Казахской степи
Май 15, 2024
Pro Science
Раскопки в Телль Ваджеф
Май 15, 2024
ЗАГРУЗИТЬ ЕЩЕ

Бутовский полигон

Смотреть все
Начальник жандармов
Май 6, 2024

Человек дня

Смотреть все
Человек дня: Александр Белявский
Май 6, 2024
Публичные лекции

Лев Рубинштейн в «Клубе»

Pro Science

Мальчики поют для девочек

Колонки

«Год рождения»: обыкновенное чудо

Публичные лекции

Игорь Шумов в «Клубе»: миграция и литература

Pro Science

Инфракрасные полярные сияния на Уране

Страна

«Россия – административно-территориальный монстр» — лекция географа Бориса Родомана

Страна

Сколько субъектов нужно Федерации? Статья Бориса Родомана

Pro Science

Эксперименты империи. Адат, шариат и производство знаний в Казахской степи

О проекте Авторы Биографии
Свидетельство о регистрации средства массовой информации Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством Российской Федерации по делам печати, телерадиовещания и средств массовой информации.

© Полит.ру, 1998–2024.

Политика конфиденциальности
Политика в отношении обработки персональных данных ООО «ПОЛИТ.РУ»

В соответствии с подпунктом 2 статьи 3 Федерального закона от 27 июля 2006 г. № 152-ФЗ «О персональных данных» ООО «ПОЛИТ.РУ» является оператором, т.е. юридическим лицом, самостоятельно организующим и (или) осуществляющим обработку персональных данных, а также определяющим цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.

ООО «ПОЛИТ.РУ» осуществляет обработку персональных данных и использование cookie-файлов посетителей сайта https://polit.ru/

Мы обеспечиваем конфиденциальность персональных данных и применяем все необходимые организационные и технические меры по их защите.

Мы осуществляем обработку персональных данных с использованием средств автоматизации и без их использования, выполняя требования к автоматизированной и неавтоматизированной обработке персональных данных, предусмотренные Федеральным законом от 27 июля 2006 г. № 152-ФЗ «О персональных данных» и принятыми в соответствии с ним нормативными правовыми актами.

ООО «ПОЛИТ.РУ» не раскрывает третьим лицам и не распространяет персональные данные без согласия субъекта персональных данных (если иное не предусмотрено федеральным законом РФ).