будущее есть!
  • После
  • Конспект
  • Документ недели
  • Бутовский полигон
  • Колонки
  • Pro Science
  • Все рубрики
    После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша
После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша

Конспекты Полит.ру

Смотреть все
Алексей Макаркин — о выборах 1996 года
Апрель 26, 2024
Николай Эппле — о речи Пашиняна по случаю годовщины геноцида армян
Апрель 26, 2024
«Демография упала» — о демографической политике в России
Апрель 26, 2024
Артем Соколов — о технологическом будущем в военных действиях
Апрель 26, 2024
Анатолий Несмиян — о технологическом будущем в военных действиях
Апрель 26, 2024

После

Смотреть все
«После» для майских
Май 7, 2024

Публичные лекции

Смотреть все
Всеволод Емелин в «Клубе»: мои первые книжки
Апрель 29, 2024
Вернуться к публикациям
МФТИ физика материаловедение наука исследования
Ноябрь 23, 2023
Pro Science

Переходная намагниченность

Переходная намагниченность
ps_image1
Доменная структура материала при различных температурах и магнитном поле 0,5 тесла. Источник: Small Methods

Ученые из Московского физико-технического института вместе с французскими коллегами обнаружили материал, намагниченность которого может быть надежно зафиксирована на нескольких промежуточных значениях. Это открывает дорогу к созданию энергонезависимой памяти для жестких дисков со сверхвысокой плотностью хранения информации. Об исследовании сообщила пресс-служба МФТИ.

Несмотря на активное использование твердотельных накопителей в качестве памяти для компьютеров, жесткие диски на основе магнитной памяти всё еще остаются довольно распространенными благодаря своей дешевизне и надежности. В их основе лежит кодирование битов (нулей или единиц) с помощью правильного намагничивания доменов — небольших участков на рабочей поверхности жесткого диска.

Сама по себе намагниченность — это продукт ориентации огромного числа атомных спинов. Ноль и единица в домене достигаются тогда, когда все спины ориентированы либо вверх, либо вниз. Вместе с тем допустимы и промежуточные варианты, когда в нужном направлении «смотрит» лишь часть спинов. Такой подход позволил бы кодировать в одном домене более одного бита, что существенно повысило бы информационную емкость жестких дисков.

Чтобы реализовать эту идею на практике, требуются материалы, в которых промежуточные состояния намагниченности устойчивы, в противном случае память лишится надежности. Ученые из Центра перспективных методов мезофизики и нанотехнологий МФТИ и их коллеги из нескольких французских институтов в своих поисках обратили внимание на соединение BaFe2(PO4)2, которое они назвали просто BFPO. Этот материал демонстрирует удивительно сильную стабильность доменных стенок после заморозки ниже 15 кельвинов. При такой температуре происходит фазовый переход от мягкого магнита к супертвердому. В последнем случае домены стабилизируются настолько сильно, что для их перемагничивания требуется очень большое магнитное поле — более 14 тесла.

Так происходит из-за того, что BFPO — это квазидвумерный изинговый ферромагнетик. Говоря проще, материал можно представить в виде слоев, в пределах которых спины атомов демонстрируют коллективные упорядочивания. Такая структура дарит материалу сильную магнитную анизотропию, то есть различный отклик в зависимости от направления приложенного магнитного поля.

Отличительная особенность BFPO заключается в очень узких доменных стенках. Чтобы убедиться в этом, физики исследовали образцы с помощью магнито-силовой микроскопии при различных температурах и магнитных полях. Как и предсказывали расчеты, доменная структура при этом представляет собой совокупность полос, образующих причудливый лабиринт.

Директор Центра перспективных методов мезофизики и нанотехнологий МФТИ Василий Столяров рассказывает: «Мы в нашем центре обладаем целым рядом уникальных методик, одна из которых — криогенная  магнитно-силовая микроскопия. Эта методика позволила однозначно охарактеризовать новый материал. Мы впервые продемонстрировали его доменную структуру и ее динамику при воздействии внешнего магнитного поля и температуры. Нужно отметить, что во Франции такое исследование провести не удалось. Но и нам пришлось серьезно потрудиться: исследованные кристаллы имеют микроскопические размеры, и для изучения приходилось их помещать на специально подготовленную подложку микроманипулятором. Также они являются изоляторами, что приводит к скоплению электрического заряда на их поверхности и дополнительному, для нас вредному, взаимодействию с кантилевером. Очевидно, что материал богат различными физическими свойствами. Необходимо подумать о возможном его применении в микроэлектронике».

Температура, при которой удалось добиться проявления интересных свойств материала, некомфортна для его широкого применения, но стоит отметить возможное использование его в сверхпроводящей цифровой и квантовой электронике, где стоит острая проблема криогенной энергонезависимой памяти.

Исследование опубликовано в журнале Small Methods.



читайте также
Pro Science
Эксперименты империи. Адат, шариат и производство знаний в Казахской степи
Май 15, 2024
Pro Science
Раскопки в Телль Ваджеф
Май 15, 2024
ЗАГРУЗИТЬ ЕЩЕ

Бутовский полигон

Смотреть все
Начальник жандармов
Май 6, 2024

Человек дня

Смотреть все
Человек дня: Александр Белявский
Май 6, 2024
Публичные лекции

Лев Рубинштейн в «Клубе»

Pro Science

Мальчики поют для девочек

Колонки

«Год рождения»: обыкновенное чудо

Публичные лекции

Игорь Шумов в «Клубе»: миграция и литература

Pro Science

Инфракрасные полярные сияния на Уране

Страна

«Россия – административно-территориальный монстр» — лекция географа Бориса Родомана

Страна

Сколько субъектов нужно Федерации? Статья Бориса Родомана

Pro Science

Эксперименты империи. Адат, шариат и производство знаний в Казахской степи

О проекте Авторы Биографии
Свидетельство о регистрации средства массовой информации Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством Российской Федерации по делам печати, телерадиовещания и средств массовой информации.

© Полит.ру, 1998–2024.

Политика конфиденциальности
Политика в отношении обработки персональных данных ООО «ПОЛИТ.РУ»

В соответствии с подпунктом 2 статьи 3 Федерального закона от 27 июля 2006 г. № 152-ФЗ «О персональных данных» ООО «ПОЛИТ.РУ» является оператором, т.е. юридическим лицом, самостоятельно организующим и (или) осуществляющим обработку персональных данных, а также определяющим цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.

ООО «ПОЛИТ.РУ» осуществляет обработку персональных данных и использование cookie-файлов посетителей сайта https://polit.ru/

Мы обеспечиваем конфиденциальность персональных данных и применяем все необходимые организационные и технические меры по их защите.

Мы осуществляем обработку персональных данных с использованием средств автоматизации и без их использования, выполняя требования к автоматизированной и неавтоматизированной обработке персональных данных, предусмотренные Федеральным законом от 27 июля 2006 г. № 152-ФЗ «О персональных данных» и принятыми в соответствии с ним нормативными правовыми актами.

ООО «ПОЛИТ.РУ» не раскрывает третьим лицам и не распространяет персональные данные без согласия субъекта персональных данных (если иное не предусмотрено федеральным законом РФ).