будущее есть!
  • После
  • Конспект
  • Документ недели
  • Бутовский полигон
  • Колонки
  • Pro Science
  • Все рубрики
    После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша
После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша

Конспекты Полит.ру

Смотреть все
Алексей Макаркин — о выборах 1996 года
Апрель 26, 2024
Николай Эппле — о речи Пашиняна по случаю годовщины геноцида армян
Апрель 26, 2024
«Демография упала» — о демографической политике в России
Апрель 26, 2024
Артем Соколов — о технологическом будущем в военных действиях
Апрель 26, 2024
Анатолий Несмиян — о технологическом будущем в военных действиях
Апрель 26, 2024

После

Смотреть все
«После» для майских
Май 7, 2024

Публичные лекции

Смотреть все
Всеволод Емелин в «Клубе»: мои первые книжки
Апрель 29, 2024
Вернуться к публикациям
физика
Ноябрь 8, 2023
Pro Science

Барьеры для электронов

Барьеры для электронов
7nn6n8qiulsrngzcvmunjp44lyhu5sav
Фото: Michael Pollak/Flickr

Ученые определили, что повысить мощность полупроводниковых лазеров можно с помощью барьерных слоев, препятствующих «утечке» электронов из активной зоны лазера, в которой генерируется излучение. Такие слои не дают заряженным частицам на больших скоростях пролетать мимо активной зоны, в результате чего последние накапливаются там и создают более мощный световой импульс. Предложенный авторами подход позволит заметно увеличить эффективность существующих лазеров, применяемых для передачи информации, а также в устройствах для измерения дальности. Об исследовании сообщает пресс-служба Российского научного фонда.

Полупроводниковые лазеры, излучающие свет с длиной волны около 1550 нанометров (в инфракрасном диапазоне), используются для передачи информации на большие расстояния: десятки, сотни и тысячи километров, а также в автомобильных ЛИДАРах — устройствах для измерения дальности и получения 3D-изображений окружающего пространства. Такие лазеры создают из многослойных кристаллических материалов — гетероструктур — на основе твердых растворов из алюминия, галлия, индия и мышьяка, поскольку они способны излучать свет в требуемой области инфракрасного диапазона. Эти гетероструктуры устроены таким образом, что при подаче напряжения через них в противоположные стороны начинают двигаться частицы-носители электрического заряда. Условно, справа налево перемещаются отрицательно заряженные электроны, а в обратном направлении — положительно заряженные квазичастицы, называемые «дырками». При этом примерно на середине их пути расположена активная область — место, попадая в которое электроны и «дырки» объединяются — рекомбинируют, что приводит к испусканию излишков энергии после их взаимодействия в виде света. 

Чтобы создать максимально мощный лазер, нужно сделать так, чтобы все электроны и «дырки» попадали в активную область и оставались там. Однако на практике некоторые частицы «пролетают» мимо этой зоны — этот процесс называется утечкой носителей заряда.

Измерительный стенд, использованный в исследовании. Источник: Александр Подоскин

Измерительный стенд, использованный в исследовании. Источник: Александр Подоскин

Специалисты из Физико-технического института имени А. Ф. Иоффе РАН (Санкт-Петербург) и Научно-исследовательского института «Полюс» имени М. Ф. Стельмаха (Москва) создали гетероструктуры на основе твердых растворов алюминия, галлия, индия и мышьяка, в разных частях которых разместили барьерные слои из тройного соединения алюминия-индия-мышьяка. Через такие барьеры частицам оказывается сложно пройти из-за недостатка энергии, и в результате вероятность захвата частиц в активную область приближается к 100 %, а частиц, утекающих мимо активной зоны, практически не наблюдается.

Авторы формировали гетероструктуры в специализированной установке, где из молекул высокочистых соединений на подложку последовательно осаждались монокристаллические слои заданного состава. В экспериментах ученые исследовали образцы с различным количеством и расположением барьеров: первый — без барьерных слоев, второй — с одним таким слоем, не позволяющим электронам «пролететь» мимо активной зоны, третий — с таким же слоем, но на пути «дырок», четвертый образец содержал два барьерных слоя как для электронов, так и для «дырок».

Затем авторы исследовали мощность излучения полученных образцов, подавая на них электрический ток одинаковой величины. Эксперимент показал, что наибольшей мощностью обладает гетероструктура с одним барьерным слоем для электронов. Ее мощность оказалась в два раза выше, чем у исходного материала без барьерных слоев. При этом попытка поставить барьер на пути «дырок» не дала значимых улучшений. Это можно объяснить тем, что электроны в используемых авторами материалах — гораздо более подвижные частицы, их скорость перемещения по материалу выше, чем у «дырок». Соответственно, именно они обычно «пролетают» мимо активной зоны, что и вносит основной вклад в уменьшение мощности излучения.  

«Нам удалось выявить основную причину потери мощности полупроводниковых лазеров и устранить ее, введя в гетероструктуру барьерный слой для электронов. В дальнейшем мы планируем искать новые варианты самой конструкции лазера, которая позволит еще больше повысить эффективность устройства. Кроме того, для нас оказалось неожиданным, что один барьерный слой для электронов оказался эффективнее, чем два — для электронов и для "дырок". Поэтому мы будем также искать причины такого результата», — рассказывает руководитель проекта Александр Подоскин, кандидат физико-математических наук, научный сотрудник Физико-технического института имени А. Ф. Иоффе РАН.

Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда, опубликованы в Journal of Luminescence.

читайте также
Pro Science
Эксперименты империи. Адат, шариат и производство знаний в Казахской степи
Май 15, 2024
Pro Science
Раскопки в Телль Ваджеф
Май 15, 2024
ЗАГРУЗИТЬ ЕЩЕ

Бутовский полигон

Смотреть все
Начальник жандармов
Май 6, 2024

Человек дня

Смотреть все
Человек дня: Александр Белявский
Май 6, 2024
Публичные лекции

Лев Рубинштейн в «Клубе»

Pro Science

Мальчики поют для девочек

Колонки

«Год рождения»: обыкновенное чудо

Публичные лекции

Игорь Шумов в «Клубе»: миграция и литература

Pro Science

Инфракрасные полярные сияния на Уране

Страна

«Россия – административно-территориальный монстр» — лекция географа Бориса Родомана

Страна

Сколько субъектов нужно Федерации? Статья Бориса Родомана

Pro Science

Эксперименты империи. Адат, шариат и производство знаний в Казахской степи

О проекте Авторы Биографии
Свидетельство о регистрации средства массовой информации Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством Российской Федерации по делам печати, телерадиовещания и средств массовой информации.

© Полит.ру, 1998–2024.

Политика конфиденциальности
Политика в отношении обработки персональных данных ООО «ПОЛИТ.РУ»

В соответствии с подпунктом 2 статьи 3 Федерального закона от 27 июля 2006 г. № 152-ФЗ «О персональных данных» ООО «ПОЛИТ.РУ» является оператором, т.е. юридическим лицом, самостоятельно организующим и (или) осуществляющим обработку персональных данных, а также определяющим цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.

ООО «ПОЛИТ.РУ» осуществляет обработку персональных данных и использование cookie-файлов посетителей сайта https://polit.ru/

Мы обеспечиваем конфиденциальность персональных данных и применяем все необходимые организационные и технические меры по их защите.

Мы осуществляем обработку персональных данных с использованием средств автоматизации и без их использования, выполняя требования к автоматизированной и неавтоматизированной обработке персональных данных, предусмотренные Федеральным законом от 27 июля 2006 г. № 152-ФЗ «О персональных данных» и принятыми в соответствии с ним нормативными правовыми актами.

ООО «ПОЛИТ.РУ» не раскрывает третьим лицам и не распространяет персональные данные без согласия субъекта персональных данных (если иное не предусмотрено федеральным законом РФ).