будущее есть!
  • После
  • Конспект
  • Документ недели
  • Бутовский полигон
  • Колонки
  • Pro Science
  • Все рубрики
    После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша
После Конспект Документ недели Бутовский полигон Колонки Pro Science Публичные лекции Медленное чтение Кино Афиша

Конспекты Полит.ру

Смотреть все
Алексей Макаркин — о выборах 1996 года
Апрель 26, 2024
Николай Эппле — о речи Пашиняна по случаю годовщины геноцида армян
Апрель 26, 2024
«Демография упала» — о демографической политике в России
Апрель 26, 2024
Артем Соколов — о технологическом будущем в военных действиях
Апрель 26, 2024
Анатолий Несмиян — о технологическом будущем в военных действиях
Апрель 26, 2024

После

Смотреть все
«После» для майских
Май 7, 2024

Публичные лекции

Смотреть все
Всеволод Емелин в «Клубе»: мои первые книжки
Апрель 29, 2024
Вернуться к публикациям
искусственный интеллект мозг
Октябрь 17, 2023
Pro Science

Нейросеть моделирует мозг

Нейросеть моделирует мозг
ps_558ef069-3469-4188-a0db-4753d87f4fda

Российские ученые предложили новую модель сверточной нейронной сети для анализа изображений, имитирующую работу кратковременной памяти, сообщает пресс-служба Российского научного фонда. Главное преимущество алгоритма состоит в том, что при его работе воспроизводятся не только связи между цифровыми аналогами  нейронов, как в обычных нейросетях, но и взаимодействие этих клеток с астроцитами, — вспомогательными клетками нервной ткани. Такая «гибридная» модель на 15 % точнее обрабатывает изображения, чем нейросеть без улучшений, а потому будет полезна при создании систем искусственного интеллекта, использующихся в управлении и навигации робототехнических устройств и в медицинской диагностике.

Сверточные нейронные сети сегодня активно применяются для распознавания и классификации изображений, а потому незаменимы в компьютерном зрении. Например, в системах автоматического вождения для распознавания дорожных знаков и при обработке естественного языка, в частности, для анализа текста с целью извлечения полезной информации.

Несмотря на широкое распространение, сверточные нейронные сети обладают недостатками. Например, их логику принятия решений сложно понять и объяснить. Это затрудняет использование таких сетей в сферах, где очень важно понимать, на основании чего алгоритм получил тот или иной результат, например в медицинской диагностике. Также существующие алгоритмы всё еще не способны имитировать процессы обработки информации в головном мозге. Совместив нейросети с математическими моделями информационных процессов в мозге, можно расширить возможности технологии, в частности, добавив новый функционал или улучшив их точность.

Ученые из Нижегородского государственного университета имени Н. И. Лобачевского  предложили новую сверточную нейронную сеть с кратковременной памятью, которая управляется астроцитами. Кратковременная память, также известная как рабочая память, отвечает за временное хранение и управление информацией. Она играет решающую роль во внимании, обучении, решении проблем и принятии решений. В этой работе авторы совместили в одном алгоритме искусственную нейронную сеть и результаты моделирования кратковременной памяти, в которых учитываются взаимодействие нейронов и астроцитов. Это позволило алгоритму на 15 % точнее, чем ранее, обрабатывать изображения и выводить полученную информацию человеку. Это достигается за счет того, что новая модель, в отличие от исходной, запоминает необходимые объекты, а потому выдает более точные результаты обработки изображения.

Такие гибридные модели можно использовать в тех же направлениях, где обычные сверточные нейросети используются и сейчас, например в компьютерном зрении. Это увеличит их возможности в обработке изображений, а именно позволит точнее находить необходимые объекты.

«Наша работа показывает, что улучшить нейронные сети можно, сымитировав в алгоритме такие функции мозга, как кратковременная память. Такое совмещение уже разработанных систем искусственного интеллекта с новыми моделями информационных функций мозга — перспективная и развивающаяся область, так как это позволяет преодолевать существующие ограничения алгоритмов за счет внесения новых знаний о работе мозга. В дальнейшем мы планируем добавить в алгоритм модель внеклеточного матрикса мозга, то есть вещества, в котором находятся клетки. Матрикс отвечает за саморегуляцию в мозге и, как предполагается, может хранить "следы памяти"», — рассказывает руководитель проекта Сергей Стасенко, доцент Нижегородского государственного университета имени Н. И. Лобачевского.

В рамках проекта авторы разработали программное обеспечение, которое зарегистрировали в Роспатенте при поддержке Центра трансфера технологий Нижегородского государственного университета имени Н. И. Лобачевского.

Результаты исследования, поддержанного грантом Российского научного фонда, опубликованы в журнале Biometics.

читайте также
Pro Science
Эксперименты империи. Адат, шариат и производство знаний в Казахской степи
Май 15, 2024
Pro Science
Раскопки в Телль Ваджеф
Май 15, 2024
ЗАГРУЗИТЬ ЕЩЕ

Бутовский полигон

Смотреть все
Начальник жандармов
Май 6, 2024

Человек дня

Смотреть все
Человек дня: Александр Белявский
Май 6, 2024
Публичные лекции

Лев Рубинштейн в «Клубе»

Pro Science

Мальчики поют для девочек

Колонки

«Год рождения»: обыкновенное чудо

Публичные лекции

Игорь Шумов в «Клубе»: миграция и литература

Pro Science

Инфракрасные полярные сияния на Уране

Страна

«Россия – административно-территориальный монстр» — лекция географа Бориса Родомана

Страна

Сколько субъектов нужно Федерации? Статья Бориса Родомана

Pro Science

Эксперименты империи. Адат, шариат и производство знаний в Казахской степи

О проекте Авторы Биографии
Свидетельство о регистрации средства массовой информации Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством Российской Федерации по делам печати, телерадиовещания и средств массовой информации.

© Полит.ру, 1998–2024.

Политика конфиденциальности
Политика в отношении обработки персональных данных ООО «ПОЛИТ.РУ»

В соответствии с подпунктом 2 статьи 3 Федерального закона от 27 июля 2006 г. № 152-ФЗ «О персональных данных» ООО «ПОЛИТ.РУ» является оператором, т.е. юридическим лицом, самостоятельно организующим и (или) осуществляющим обработку персональных данных, а также определяющим цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.

ООО «ПОЛИТ.РУ» осуществляет обработку персональных данных и использование cookie-файлов посетителей сайта https://polit.ru/

Мы обеспечиваем конфиденциальность персональных данных и применяем все необходимые организационные и технические меры по их защите.

Мы осуществляем обработку персональных данных с использованием средств автоматизации и без их использования, выполняя требования к автоматизированной и неавтоматизированной обработке персональных данных, предусмотренные Федеральным законом от 27 июля 2006 г. № 152-ФЗ «О персональных данных» и принятыми в соответствии с ним нормативными правовыми актами.

ООО «ПОЛИТ.РУ» не раскрывает третьим лицам и не распространяет персональные данные без согласия субъекта персональных данных (если иное не предусмотрено федеральным законом РФ).